1Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El Alia, 16111Bab Ezzouar, Alger, Algeria
2Faculté des Sciences, Département Sciences de la Matière, Université d’Alger 1, 2 Rue Didouche Mourad, Alger centre 16000, Alger, Algeria
3Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé, UMR 7515 CNRS, Université de Strasbourg, Groupe “Énergies et Carburants pour un Environnement durable”, 25 rue Becquerel, 67087 Strasbourg Cedex 2,, France
4 Laboratoire des Procédés pour Matériaux, Energie, Eau et Environnement, Faculté des Sciences et des Sciences Appliquées, Université de Bouira, rue Drissi Yahia, 10000 Bouira, Algeria
BibTex Citation Data :
@article{BCREC9295, author = {Hassiba Messaoudi and Sébastien Thomas and Samira Slyemi and Abdelhamid Djaidja and Akila Barama}, title = {Syngas Production via Methane Dry Reforming over La-Ni-Co and La-Ni-Cu Catalysts with Spinel and Perovskite Structures}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {15}, number = {3}, year = {2020}, keywords = {Perovskite; Spinel; Transition metals; Dry reforming; Syngas}, abstract = { In this paper, the catalytic properties of La-Ni-M (M = Co, Cu) based materials in dry reforming of methane (DRM) for syngas (CO + H 2 ) production, were studied in the temperature range 773−1073 K. The LaNi 0.9 M 0.1 O 3 and La 2 Ni 0.9 M 0.1 O 4 (M = Co, Cu and Ni/M = 0.9/0.1) catalysts were prepared by partial substitution of Ni by Co or Cu using sol-gel method then characterized by XRD, H 2 -TPR and N 2 physisorption. The XRD analysis of fresh catalysts showed, in the case of Co-substitution, the formation of La-Ni and La-Co perovskite and spinel structures, while only LaNiO 3 and La 2 NiO 4 phases were observed for the Cu-substituted samples. The substitution of these two structures by copper decreases the reduction temperature compared to cobalt. The reactivity results showed that the partial substitution of nickel by copper decreases the methane activation temperature, whereas a better stability of catalytic activity and syngas production was obtained via the cobalt-substituted catalysts, which is due to a synergistic effect between Ni and Co. The TPO analysis carried out on the spent catalysts indicated that the lowest carbon deposition was obtained for the cobalt substituted samples. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {885--897} doi = {10.9767/bcrec.15.3.9295.885-897}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/9295} }
Refworks Citation Data :
In this paper, the catalytic properties of La-Ni-M (M = Co, Cu) based materials in dry reforming of methane (DRM) for syngas (CO + H2) production, were studied in the temperature range 773−1073 K. The LaNi0.9M0.1O3 and La2Ni0.9M0.1O4 (M = Co, Cu and Ni/M = 0.9/0.1) catalysts were prepared by partial substitution of Ni by Co or Cu using sol-gel method then characterized by XRD, H2-TPR and N2 physisorption. The XRD analysis of fresh catalysts showed, in the case of Co-substitution, the formation of La-Ni and La-Co perovskite and spinel structures, while only LaNiO3 and La2NiO4 phases were observed for the Cu-substituted samples. The substitution of these two structures by copper decreases the reduction temperature compared to cobalt. The reactivity results showed that the partial substitution of nickel by copper decreases the methane activation temperature, whereas a better stability of catalytic activity and syngas production was obtained via the cobalt-substituted catalysts, which is due to a synergistic effect between Ni and Co. The TPO analysis carried out on the spent catalysts indicated that the lowest carbon deposition was obtained for the cobalt substituted samples. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)