skip to main content

Synthesis and Characterisation of Graphene Oxide Catalysts for Glycerol Acetylation

1Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Jalan Ahmad Yani, Tromol Pos I, Pabelan Kartasura Surakarta 57102, Indonesia

2Department of Mechanical Engineering, Universitas Muhammadiyah Surakarta, Jalan Ahmad Yani, Tromol Pos 1, Pabelan Kartasura Surakarta 57102, Indonesia

Received: 22 Apr 2024; Revised: 15 Jun 2024; Accepted: 15 Jun 2024; Available online: 8 Jul 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Glycerol in large quantities as a by-product of biodiesel production is a promising feedstock to be converted into more valuable products such as acetin. In this work, acetin converted from glycerol acetylation with acetic acid was performed over graphene oxide as a catalyst in a batch reactor. The study's objective was to evaluate the effect of sodium nitrate amount in the catalyst preparation on the catalyst's characteristics and catalytic performance. The graphene oxide (GO) catalysts were charac­terised by various tests, such as SEM-EDX for their morphology, the nitrogen adsorption capacity using Breneur-Emmet Teller (BET), structural analysis using XRD, functional group us­­ing FTIR, and catalytic activity on glycerol acetylation. The GO1, GO2, and GO3 catalysts were varied based on the NaNO3 amount in the modified Hummer method. The experiments found that the NaNO3 amount in catalyst preparation plays a vital role in GO structure formation. The GO2 catalyst has the highest performance, as indicated by the highest surface area, pore volume, and size. High glycerol conversion (94 %) and selectivity toward the interest products of triacetin (24 %) and diacetin + triacetin (83 %) were reached in 2 h of reaction using three wt.% catalysts, 110 °C reaction temperature, and 1:9 molar ratio of glycerol to acetic acid. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Acetylation; Catalytic Activity; Glycerol; Graphene Oxide; MWCNTs
Funding: Ministry of Research and Technology / National Agency for Research and Innovation Indonesia under contract 199.17/A.3-LPPM/V/2019

Article Metrics:

  1. Azarpour, A., Mohammadzadeh, O., Rezaei, N., Zendehboudi, S. (2022). Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Conversion and Management, 269, 115945. DOI: 10.1016/j.enconman.2022.115945
  2. Balikowa, A., Effendy, M., Ngafwan, N., Wandera, C. (2023). The impacts of nanoscale silica particle additives on fuel atomisation and droplet size in the internal combustion engines: A review. Applied Research and Smart Technology (ARSTech), 4(2), 92–111. DOI: 10.23917/arstech.v4i2.2759
  3. Ong, H.C., Chen, W.-H., Farooq, A., Gan, Y.Y., Lee, K.T., Ashokkumar, V. (2019). Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 113, 109266. DOI: 10.1016/j.rser.2019.109266
  4. Sahani, S., Roy, T., Chandra Sharma, Y. (2019). Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. Journal of Cleaner Production, 237, 117699. DOI: 10.1016/j.jclepro.2019.117699
  5. Caldas, B.S., Nunes, C.S., Souza, P.R., Rosa, F.A., Visentainer, J. V., Júnior, O. de O.S., Muniz, E.C. (2016). Supercritical ethanolysis for biodiesel production from edible oil waste using ionic liquid [HMim][HSO4] as catalyst. Applied Catalysis B: Environmental, 181, 289–297. DOI: 10.1016/j.apcatb.2015.07.047
  6. Gardy, J., Hassanpour, A., Lai, X., Ahmed, M.H., Rehan, M. (2017). Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Applied Catalysis B: Environmental, 207, 297–310. DOI: 10.1016/j.apcatb.2017.01.080
  7. Singh, V., Belova, L., Singh, B., Sharma, Y.C. (2018). Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM). Energy Conversion and Management, 174, 198–207. DOI: 10.1016/j.enconman.2018.08.029
  8. Rajak, U., Verma, T.N. (2018). Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine. Energy Conversion and Management, 166, 704–718. DOI: 10.1016/j.enconman.2018.04.070
  9. Purnama, H., Harland, Hidayati, N. (2020). Biodiesel from microalgae Nannochloropsis oculata and Tetraselmis chuii by sonication technique and K 2 CO 3 catalyst. IOP Conference Series: Materials Science and Engineering, 821(1), 012011. DOI: 10.1088/1757-899X/821/1/012011
  10. Banković-Ilić, I.B., Stamenković, O.S., Veljković, V.B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), 3621–3647. DOI: 10.1016/j.rser.2012.03.002
  11. Bizualem, Y.D., Nurie, A.G. (2024). A review on recent biodiesel intensification process through cavitation and microwave reactors: Yield, energy, and economic analysis. Heliyon, 10(2), e24643. DOI: 10.1016/j.heliyon.2024.e24643
  12. Musthofa, M., Lee, J., Harvey, A. (2015). Catalytic Cracking of Triglyceride Over Sulphated Zirconia Solid Catalyst: Process, Kinetics, and Mechanism. In: Olabi, A.G., Alaswad, A. (eds). Paisley: Proceeding of SEEP, pp. 11–14
  13. Khayoon, M.S., Hameed, B.H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229–9235. DOI: 10.1016/j.biortech.2011.07.035
  14. Liao, X., Zhu, Y., Wang, S.G., Li, Y. (2009). Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation. Fuel Processing Technology, 90(7–8), 988–993. DOI: 10.1016/j.fuproc.2009.03.015
  15. Khayoon, M.S., Hameed, B.H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229–9235. DOI: 10.1016/j.biortech.2011.07.035
  16. Okoye, P.U., Hameed, B.H. (2016). Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renewable and Sustainable Energy Reviews, 53, 558–574. DOI: 10.1016/j.rser.2015.08.064
  17. Keogh, J., Tiwari, M.S., Manyar, H. (2019). Esterification of Glycerol with Acetic Acid Using Nitrogen-Based Brønsted-Acidic Ionic Liquids. Industrial & Engineering Chemistry Research, 58, 17235–17243. DOI: 10.1021/acs.iecr.9b01223
  18. Kong, P.S., Aroua, M.K., Daud, W.M.A.W., Lee, H.V., Cognet, P., Pérès, Y. (2016). Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: A review. RSC Advances, 6(73), 68885–68905. DOI: 10.1039/c6ra10686b
  19. Sun, J., Tong, X., Yu, L., Wan, J. (2016). An efficient and sustainable production of triacetin from the acetylation of glycerol using magnetic solid acid catalysts under mild conditions. Catalysis Today, 264, 115–122. DOI: 10.1016/j.cattod.2015.07.011
  20. Tudorache, M., Negoi, A., Protesescu, L., Parvulescu, V.I. (2014). Biocatalytic alternative for bio-glycerol conversion with alkyl carbonates via a lipase-linked magnetic nano-particles assisted process. Applied Catalysis B: Environmental, 145, 120–125. DOI: 10.1016/j.apcatb.2012.12.033
  21. Liao, X., Zhu, Y., Wang, S.G., Chen, H., Li, Y. (2010). Theoretical elucidation of acetylating glycerol with acetic acid and acetic anhydride. Applied Catalysis B: Environmental, 94, 64–70. DOI: 10.1016/j.apcatb.2009.10.021
  22. Gonçalves, V.L.C., Pinto, B.P., Silva, J.C., Mota, C.J.A. (2008). Acetylation of glycerol catalyzed by different solid acids. Catalysis Today, 133–135(1–4), 673–677. DOI: 10.1016/j.cattod.2007.12.037
  23. Caballero, K.V., Guerrero-Amaya, H., Baldovino-Medrano, V.G. (2019). Revisiting glycerol esterification with acetic acid over Amberlyst-35 via statistically designed experiments: Overcoming transport limitations. Chemical Engineering Science, 207, 91–104. DOI: 10.1016/j.ces.2019.06.003
  24. Reddy, P.S., Sudarsanam, P., Raju, G., Reddy, B.M. (2010). Synthesis of bio-additives: Acetylation of glycerol over zirconia-based solid acid catalysts. Catalysis Communications, 11(15), 1224–1228. DOI: 10.1016/j.catcom.2010.07.006
  25. Chamack, M., Mahjoub, A.R., Akbari, A. (2018). Zirconium-modified mesoporous silica as an efficient catalyst for the production of fuel additives from glycerol. Catalysis Communications, 110, 1–4. DOI: 10.1016/j.catcom.2018.02.021
  26. Veluturla, S., Narula, A., D, S.R., Shetty, S.P. (2017). Kinetic study of synthesis of bio-fuel additives from glycerol using a hetropolyacid. Resource-Efficient Technologies, 3, 337–341. DOI: 10.1016/j.reffit.2017.02.005
  27. Balaraju, M., Nikhitha, P., Jagadeeswaraiah, K., Srilatha, K., Sai Prasad, P.S., Lingaiah, N. (2010). Acetylation of glycerol to synthesize bioadditives over niobic acid supported tungstophosphoric acid catalysts. Fuel Processing Technology, 91(2), 249–253. DOI: 10.1016/j.fuproc.2009.10.005
  28. Kowalska-Kus, J., Held, A., Nowinska, K. (2016). Enhancement of the catalytic activity of H-ZSM-5 zeolites for glycerol acetalization by mechanical grinding. Reaction Kinetics, Mechanisms and Catalysis, 117(1), 341–352. DOI: 10.1007/s11144-015-0922-4
  29. Jyoti Konwar, L., Mäki-arvela, P., Begum, P., Kumar, N., Jyoti, A., Mikkola, J., Chandra, R., Deka, D. (2015). Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride : Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons. Journal of Catalysis, 329, 237–247. DOI: 10.1016/j.jcat.2015.05.021
  30. Gupta, P., Paul, S. (2014). Solid acids: Green alternatives for acid catalysis. Catalysis Today, 236(PART B), 153–170. DOI: 10.1016/j.cattod.2014.04.010
  31. Hidayati, N., Sari, R.P., Purnama, H. (2020). Catalysis of glycerol acetylation on solid acid catalyst: a review. Jurnal Kimia Sains dan Aplikasi, 23(12), 414–423. DOI: 10.14710/jksa.23.12.414-423
  32. Khayoon, M.S., Hameed, B.H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229–9235. DOI: 10.1016/j.biortech.2011.07.035
  33. Liu, Y.-Y., Qi, J.-M., Bai, L.-S., Xu, Y.-L., Ma, N., Sun, F.-F. (2016). Graphite oxide-catalyzed acetylation of alcohols and phenols. Chinese Chemical Letters, 27(5), 726–730. DOI: 10.1016/j.cclet.2016.01.005
  34. Mushahary, N., Sarkar, A., Basumatary, F., Brahma, S., Das, B., Basumatary, S. (2024). Recent developments on graphene oxide and its composite materials: From fundamentals to applications in biodiesel synthesis, adsorption, photocatalysis, supercapacitors, sensors and antimicrobial activity. Results in Surfaces and Interfaces, 15, 100225. DOI: 10.1016/j.rsurfi.2024.100225
  35. Hidayati, N., Maulida, I.R., Purnama, H., Musthofa, M., Ur Rahmah, A. (2024). Optimisation of the glycerol acetylation process using graphene oxide catalyst. South African Journal of Chemical Engineering, 48, 254–264. DOI: 10.1016/j.sajce.2024.02.005
  36. Chang, C., Chang, K., Shen, H., Hu, C. (2014). A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2762–2769. DOI: 10.1016/j.jtice.2014.05.030
  37. Setyaningsih, L., Siddiq, F., Pramezy, A. (2018). Esterification of glycerol with acetic acid over Lewatit catalyst. MATEC Web of Conferences, 154, 2–5. DOI: 10.1051/matecconf/201815401028
  38. Badan Standardisasi Nasional (2015). Biodiesel SNI 7182, 2015
  39. Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansoura, S., Atieh, M.A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439–14448. DOI: 10.1016/j.ceramint.2019.04.165
  40. Alkhouzaam, A., Qiblawey, H., Khraisheh, M., Atieh, M., Al-Ghouti, M. (2020). Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceramics International, 46(15), 23997–24007. DOI: 10.1016/j.ceramint.2020.06.177
  41. Higginbotham, A.L., Kosynkin, D. V, Sinitskii, A., Sun, Z., Tour, J.M. (2010). Lower-Defect Graphene Oxide Nanotubes. ACS nano, 4(4), 2059. DOI: 10.1021/nn100118m
  42. Alothman, Z.A. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902 DOI: 10.3390/ma5122874
  43. Smith, A.T., Marie, A., Zeng, S., Liu, B., Sun, L. (2019). Nano Materials Science Synthesis, properties, and applications of graphene oxide / reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47. DOI: 10.1016/j.nanoms.2019.02.004
  44. Liu, H., Chen, J., Chen, L., Xu, Y., Guo, X., Fang, D. (2016). Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterification and Esterification Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterif. ACS Sustainable Chemistry & Engineering, 4(6), 3140–3150. DOI: 10.1021/acssuschemeng.6b00156
  45. Chang, C., Chang, K., Shen, H., Hu, C. (2014). A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2762–2769. DOI: 10.1016/j.jtice.2014.05.030
  46. Nda-umar, U.I., Irmawati, R., N. Muhamad, E., Azri, N., Ishak, N.S., Yahaya, M., Taufiq-Yap, Y.H. (2021). Journal of the Taiwan Institute of Chemical Engineers Organosulfonic acid-functionalized biomass-derived carbon as a catalyst for glycerol acetylation and optimization studies via response surface methodology. Journal of Taiwan Institute of Chemical engineers, 118, 355–370. DOI: 10.1016/j.jtice.2020.12.021
  47. Pendolino, F., Armata, N. (2017). Graphene Oxide in Environmental Remediation Process. Springer Cham. DOI: 10.1007/978-3-319-60429-9
  48. Shen, Y., Yang, S., Zhou, P., Sun, Q., Wang, P., Wan, L., Li, J., Chen, L., Wang, X., Ding, S., Wei, D. (2013). Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon, 62, 157–164. DOI: 10.1016/j.carbon.2013.06.007
  49. Li, Y., Liao, J., Wang, S., Chiang, W. (2016). Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Nature Publishing Group, 6(March), 1–12. DOI: 10.1038/srep22755
  50. Mertsoy, E.Y., Sert, E., Atalay, S., Atalay, F.S. (2021). Fabrication of chromium based metal organic framework (MIL-101)/activated carbon composites for acetylation of glycerol. Journal of the Taiwan Institute of Chemical Engineers, 120, 93–105. DOI: 10.1016/j.jtice.2021.03.034
  51. Dizoğlu, G., Sert, E. (2020). Fuel additive synthesis by acetylation of glycerol using activated carbon/UiO-66 composite materials. Fuel, 281, 118584. DOI: 10.1016/j.fuel.2020.118584
  52. Fidelis Uchenna, A., Irmawati, R., Taufiq-Yap, Y.H., Mohd Izham, S., Nda-Umar, U.I. (2023). Glycerol acetylation over yttrium oxide (Y2O3) catalyst supported on palm kernel shell-derived carbon and parameters optimization studies using response surface methodology (RSM). Arabian Journal of Chemistry, 16(8), 104865. DOI: 10.1016/j.arabjc.2023.104865
  53. Malaika, A., Mesjasz, D., Kozłowski, M. (2023). Maximizing the selectivity to triacetin in glycerol acetylation through a plastic waste-derived carbon catalyst development and selection of a reaction unit. Fuel, 333, 126271. DOI: 10.1016/j.fuel.2022.126271

Last update:

No citation recorded.

Last update:

No citation recorded.