skip to main content

Mixed Oxide Supported MoO3 Catalyst: Preparation, Characterization and Activities in Nitration of o-xylene

1Department of Chemistry, Shri Shivaji Science College, Amravati, India

2University Department of Chemical Technology, SGB Amravati University, Amravati, India

Received: 9 Feb 2010; Revised: 5 Mar 2010; Accepted: 18 Mar 2010; Available online: 20 Jun 2010; Published: 30 Jun 2010.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2010 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Abstract
TiO2-ZrO2 mixed oxide support was prepared and impregnated with 12 wt % MoO3 and calcined at various temperatures. The resultant catalyst systems were characterized by XRD, FT-IR, BET, SEM, NH3-TPD and pyridine adsorbed FT-IR methods to know the physico-chemical changes occurred in course of thermal treatment. Activities of these catalysts were tested by employing them in the nitration of o-xylene. Mostly, 500 oC calcined catalyst sample was found to be most active for nitration reaction. Catalyst calcined at higher temperatures showed the negative influence on o-xylene conversion and 4-nitro-o-xylene selectivity. Conversion can be correlated with the presence of strong Brönsted acid sites over the catalyst surface whereas change in selectivity was found attributed to the pore diameter of the catalyst. These catalysts also performed satisfactorily, when used for nitration of other aromatics. No use of corrosive sulfuric acid and efficient reusability of the catalyst make the process environmentally friendly and economic. © 2010 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Keywords: TiO2-ZrO2; Mixed oxide; Nitration; O-xylene

Article Metrics:

  1. Olah, G.A.; Malhotra, R.; Narang, S.C. 1989. Nitration: Method and Mechanisms: VCH publisher Inc-New York 1989: 201-204
  2. Booth, G., Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A17: VCH-Weinheim
  3. Coombes, R. G.; Crout D. G. H.; Hoggett, J. G.; Moodie, R. B.; and Schofield, K. 1970. Electrophilic aromatic substitution. Part VI. Kinetics and mechanism of nitration of halogenobenzenes. Journal of Chemical Society B: 347-357
  4. Bernasconi, S.; Pringruber, G.; Kogelbauer, A.; Prins, R. 2003. Factors determining the suitability of zeolite BETA as para-selective nitration catalyst. Journal of Catalysis 219: 231-241
  5. Smith, K.; Musson, A.; DeBoos, G.A. 1998. A Novel method for the nitration of simple aromatic compounds. Journal of Organic Chemistry 63: 8448-8454
  6. Choudary, B.M.; Sateesh, M.; Kantam, M.L.; Rao, K.K.; Ramprasad, K.V.; Raghavan, K.V.; Sarma, J.A.R.P. 2000. Selective nitration of aromatic compounds by solid acid catalysts. Chemical Communications: 25-26
  7. Yadav, G.D.; Nair, J.J. 1999. Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous and Mesoporous Material 33: 1-48
  8. Kogelbauer, A.; Vassena, D.; Prins, R.; Armor, J.N. 2000. Solid acids as substitutes for sulfuric acid in the liquid phase nitration of toluene to nitrotoluene and dinitrotoluene. Catalysis Today 55: 151-160
  9. Gigantee, B.; Prazeres, A.O.; Marcelo-Curto, M.J.; Cornelis, A.; Laszlo, P. 1995. Mild and selective nitration by claycop. Journal of Organic Chemistry 60: 3445-3447
  10. Choudary, B.M.; Sarma, M.R.; Kumar, K.V. 1994. Fe3+-Montmorillonite catalyst for selective nitration of chlorobenzene. Journal of Molecular Catalysis A: Chemical 87: 33-38
  11. Esakkidurai, T.; Pitchumani, K. 2000. Zeolite-mediated regioselective nitration of phenol in solid state. Journal of Molecular Catalysis A: Chemical 185: 305-309
  12. Akolekar, D.B.; Lemay, G.; Sayari, A.; Kaliaguine, S. 1995. High-pressure nitration of toluene using nitrogen dioxide on zeolite catalysts. Research on Chemical Intermediates 21:7-16
  13. Liu Y.; Ma X.; Wang S.; Gong J. 2007. The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2-SiO2 for transesterification of dimethyl oxalate with phenol: A comparative investigation. Applied Catalysis B: Environmental 77:125-134
  14. Rana, M.S.; Maity, S.K.; Ancheyta, J.; Murli Dhar, G.; Prasada Rao, T.S.R. 2003. TiO2-SiO2 supported hydrotreating catalysts: physico-chemical characterization and activities. Applied Catalysis A: General 253:165-176
  15. Wang, I.; Huang, W.H.; Wu, J.C. 1985. Benzene hydrogenation over NI/TiO2-ZrO2 catalysts. Applied Catalysis 18: 273-283
  16. Hu, H.; Waches, I.E. 1995.Catalytic Properties of Supported Molybdenum Oxide Catalysts: In Situ Raman and methanol Oxidation Studies. Journal of physical chemistry 99: 10911-10922
  17. Reddy, B.M.; Khan. A. 2005.Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst support. Catalysis Reviews 47: 257-296
  18. Samantaray, S. K.; Parida, K. M. 2001. SO42−/TiO2-SiO2 mixed oxide catalyst: 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid. Applied Catalysis A:General 211:175-187
  19. Kobayashi, M.K.; Kuma, R.; Masaki, S.; Sugishima, N. 2005. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental 60:173-179
  20. Patil, P.T.; Malshe, K.M.; Dagade, S.P.; Dongare, M.K. 2003. Regioselective nitration of o-xyleneto 4-nitro-o-xylene using nitric acid over solid acid catalysts. Catalysis Communications 4: 429-434
  21. Fling, J.; Wang, I. 1991. Dehydrocyclization of C6-C8 n-paraffins to aromatics over TiO2-ZrO2 catalysts. Journal of Catalysis 130: 577-587
  22. Said, A.A. 1994. Mutual influences between ammonium heptamolybdate and γ-alumina during their thermal treatments. Thermochim. Acta 236: 93-104
  23. Delmon, B.; Jacobs, P. A.; Poncelet, G. eds. 1976. Preparation of Catalysts. Fransen, T.; Van-Berge, P.C.; Mars, P.: 405-420: Elsevier, Amstardam
  24. Ono, T.; Kamisuki, H.; Hisashi, H.; Miyata, H. 1989. A comparison of oxidation activities andstructures of Mo oxides highly dispersed on group IV oxide supports. Journal of Catalysis 116: 303-307
  25. Noguchi, T.; Mizuno, M. 1967. Phase Changes in Solids Measured in Solar Furnace, ZrO2-TiO2 System. Solar Energy 11: 56-61
  26. Wu, J.C.; Chung, C.S.; AY, C.L.; Wang, I. 1984. Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts: II The effect of pretreatment on surface properties and catalytic activities. Journal of Catalysis 87: 98-107
  27. Nyquist, R.A.; Putzig, C.L.; Leugers, M.A. eds. 1997. Handbook of Infrared and Raman spectra of Inorganic Compounds and Organic Salts, Academic Press, New York. pp. 295-350
  28. Reddy, B.M.; Ganesh, I.; Reddy, E.P. 1997. Study of Dispersion and Thermal Stability of V2O5/TiO2-SiO2 Catalysts by XPS and Other Techniques. Journal of Physical Chemistry B 101: 1769-1774
  29. Reddy, B.M.; Chowdhury, B. 1998.Dispersion and Thermal Stability of MoO3 on TiO2-ZrO2 Mixed Oxide Support. Journal of Catalysis 179:413-419
  30. Mao, D.; Lu, G.; Chen, Q. Influence of calcination temperature and preparation method of TiO2-ZrO2 on conversion of cyclohexanone oxime to Є-caprolactam over B2O3/TiO2-ZrO2 catalyst. Applied Catalysis A: General 263:83-89
  31. Lonyl, F.; Valyon, J. 2001. On the interpretation of the NH3-TPD patterns of H-ZSM-5 an H-mordenite. Microporous Mesoporous Material 47:293-301
  32. Sawa, M.; Niwa, M.; Murakami, Y 1990. Relationship between acid amount and framework aluminum content in mordenite. Zeolites 10:532-538
  33. Zhao, B.; Wang, H.; Ma, Y. Tang. 1996. Raman spectroscopy studies on the structure of MoO3/ZrO2 solid superacid. Journal of Molecular Catalysis A: Chemical 108:167-174
  34. Yori, J.C.; Pieck, C.L.; Parera, J.M. 2000. Alkane isomerization on MoO3/ZrO2 catalysts. Catalysis Letters 64: 141-146
  35. Rahman, A; Lemay, G.; Adnot, A.; Kaliaguine, S. 1988. Spectroscopic and catalytic study of P-modified ZSM-5. Journal of Catalysis 112: 453-463
  36. Tanabe, K.; Sumiyoshi, T.; Shibata, K.; Kiyoura, T.; Kitagawa, J. 1974. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bulletin of the Chemical Society of Japan 47:1064-1066
  37. Bosman, H.J.M.; Pijpers, A.P.; Jaspers A.W.M.A. 1996. An X-Ray Photoelectron Spectroscopy Study of the Acidity of SiO2-ZrO2 Mixed Oxides. Journal of Catalysis 161: 551-559
  38. Kale, S.M.; Singh, A.P. 1999. A catalytic method for the selective chlorination of benzyl chloride to 4-chlorobenzyl chloride using zeolite catalysts. Journal of Molecular Catalysis A: Chemical 138: 263-272

Last update:

No citation recorded.

Last update:

No citation recorded.