skip to main content

Effect of Preparation Methods on Al2O3 Supported CuO-CeO2-ZrO2 Catalysts for CO Oxidation

1Department of Polymer Science & Chemical Technology, DTU, Delhi 110042, India

2Department of Chemical Engineering & Technology, B.H.U., Varanasi 221005, India

3Department of Chemical Engineering & Technology, P.U., Chandigarh 160014, India

Received: 14 Jun 2012; Revised: 8 Sep 2012; Accepted: 19 Sep 2012; Available online: 30 Dec 2013; Published: 30 Dec 2012.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2012 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Abstract
To examine the effect of preparation methods, four catalyst samples having same composition (CuCe5.17Zr3.83Ox/g-Al2O3 (15wt%) were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight - 100 mg, temperature - ambient to 250 oC, pressure - atmospheric, 2.5% CO in air, total feed rate - 60 ml/min.  It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. © 2012 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Keywords: CO oxidation; CuO-CeO2-ZrO2/Al2O3; Catalysts preparation methods; characterization
Funding: Department of Science & Technology, India under contract SERC (Engineering Science) Project Grant NO. SR/S3/ME/027/2006

Article Metrics:

  1. Langmuir, I. 1922. The mechanism of the catalytic action of platinum in the reactions 2CO + O2= 2CO2 and 2H2+ O2 = 2H2O. Trans. Faraday Soc 17: 621-654. doi: 10.1039/tf9221700621
  2. Taylor, S.H., Hutchings, G.J., and Mirzaei, A.A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide Oxidation. Chem. Commun. 1373-1374. doi: 10.1039/a903426i
  3. Santra, A.K., and Goodman, D.W. 2002. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures. Electrochimica Acta. 47: 3595-3609. doi: 10.1016/S0013-4686(02)00330-4
  4. Khoudiakov, M., and Gupta, M.C., and Deevi, S. 2004. Au/Fe2O3 nanocatalysts for CO oxidation by a deposition – precipitation technique. Nanotechnology. 15: 987–990. doi: 10.1088/0957-4484/15/8/021
  5. Yang, F., Graciani, J., Evans, J., Liu, P., Hrbek, J., Sanz, J. F., and Jose A. 2011. Rodriguez. CO Oxidation on Inverse CeOx/Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O2. J. Am. Chem. Soc. 133: 3444–3451. doi: 10.1021/ja1087979
  6. Liu, X., Wang, A., Li, L., Zhang, T., Moub, C.-Y., and Lee, J.-F. 2011. Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 278: 288–296. doi: 10.1016/j.jcat.2010.12.016
  7. White, B. E. 2007. Chemistry and Catalysis at the Surface of Nanomaterials, Ph.D. Thesis, Graduate School of Arts and Sciences, Columbia University
  8. Choi, Y., and Stenger, H.G. 2004. Kinetics, Simulation and Insights for CO Selective Oxidation in Fuel Cell Applications, J. Power Sources 129: 246-254. doi: 10.1016/j.jpowsour.2003.11.038
  9. Pillai, U. R., and Deevi, S. 2006. Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B: Environ. 64: 146–151. doi: 10.1016/j.apcatb.2005.11.005
  10. Cole, K. J., Carley, A. F., Crudace, M. J., Clarke, M., Taylor, S. H., and Hutchings, G. J. 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catal. Lett. 138:143–147. doi: 10.1007/s10562-010-0392-2
  11. Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W., and Goldfarb, D. 2000. Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chem. Mater. 12: 3715-3725. doi: 10.1021/cm001113k
  12. Rynkowski, J. M. and Dobrosz-Gómez, I. 2009. Ceria-zirconia supported gold catalysts. Annales Universitatis Mariaecurie - Skłodowska Lublin–Polonia. 14: 197-217
  13. Katz, M. 1953. The heterogeneous oxidation of carbon monoxide. Adv. Catal. 5: 177-216. doi: 10.1016/S0360-0564(08)60642-2
  14. Kummer, J. T. 1986. Use of Noble Metals in Automobile Exhaust Catalysts. J. Phys. Chem. 90: 4747-4752. doi: 10.1021/j100411a008
  15. Liu, Z.-P., and Hu, P. 2004. CO oxidation and NO reduction on metal surfaces: density functional theory investigations. Topics in Catal. 28(1–4): 71-78. doi: 10.1023/B:TOCA.0000024335.88459.81
  16. Bond, G. C., and Thompson, D. T. 2000. Gold-Catalysed Oxidation of Carbon Monoxide. Gold Bulletin 33(2): 41-50. doi: 10.1007/BF03216579
  17. Royer, S., and Duprez, D. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. Chem. Catal. Chem. 3: 24–65. doi: 10.1002/cctc.201000378
  18. Huang, T-J., and Tsai, D-H. 2003. CO oxidation behavior of copper and copper oxides. Catal. Lett. 87: 173-178. doi: 10.1023/A:1023495223738
  19. Kummer, J.T. 1980. Catalysts for Automobile Emissions Control. Prog. Energy Combust. Sci. 6: 177-199. doi: 10.1016/0360-1285(80)90006-4
  20. Huang, T-J., and Yu, T-C. 1991. Calcination conditions on copper/alumina catalysts for carbon monoxide oxidation and nitric oxide reduction. Appl. Catal. 71: 275-282. doi: 10.1016/0166-9834(91)85085-A
  21. Jiang, X-Y., Zhou, R-X., Pan, P., Zhu, B., Yuan, X-X., and Zheng, X-M. 1997. Effect of the addition of La2O3 on TPR and TPD of CuO/γ-Al2O3 catalysts. Appl. Catal. A: Gen. 150: 131-141. doi: 10.1016/S0926-860X(96)00293-1
  22. Aguila, G., Gracia, F., and Araya, P. 2008. CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A: Gen. 343: 16–24. doi: 10.1016/j.apcata.2008.03.015
  23. Liu, W., and Flytzani-Stephanopoulos, M. 1995. Total Oxidation of Carbon Monoxide and Methane over Transition Metal-fluorite Oxide Composite Catalysts I. Catalyst Composition and Activity. J. Catal. 153: 304-316. doi: 10.1006/jcat.1995.1132
  24. Luo, M. F., Zhong, Y. J., Yuan, X. X., and Zheng, X. M. 1997. TPR and TPD Studies of CuO/CeO2 Catalysts for Low Temperature CO Oxidation. Appl. Catal. A: Gen. 162: 121-131. doi: 10.1016/S0926-860X(97)00089-6
  25. Zeng, S., Bai, X., Wang X., Yu W., and Liu, Y. 2006. Valence State of Active Copper in CuOx/CeO2 catalysts for CO oxidation. J. Rare Earths. 24 (2): 177-181. doi: 10.1016/S1002-0721(06)60089-6
  26. Zheng, X., Zhang, X., Wang, S., Wang, X., and Wu, S. 2007. Effect of Addition of Base on Ceria and Reactivity of CuO/CeO2 Catalysts for Low-Temperature CO Oxidation. J. Natural Gas Chemistry 16: 179–185. doi: 10.1016/S1003-9953(07)60045-0
  27. Zhang, S-M., Huang, W-P., Qiu, X-H., Li, B-Q., Zheng, X-C, and Wu, S-H. 2002. Comparative Study On Catalytic Properties of Low-Temperature CO Oxidation of Cu/CeO2 and CuO/CeO2 Prepared via Solvated Metal Atom Impregnation and Conventional Impregnation. Catal. Letters 80: 41-46. doi: 10.1023/A:1015318525080
  28. Zhou, K., Xu, R., Sun, X., Chen, H., Tian, Q., Shen, D., and Lia, Y. 2005. Favorable Synergetic Effects Between CuO and the Reactive Planes of Ceria Nanorods. Catal. Letters 101: 169-173. doi: 10.1007/s10562-005-4885-3
  29. Sundar, R. S., and Deevi, S. 2006. CO Oxidation Activity of Cu–CeO2 Nano-Composite Catalysts Prepared by Laser Vaporization and Controlled Condensation. J. Nanoparticle Research 8: 497–509. doi: 10.1007/s11051-005-9030-0
  30. Kundakovic, L.K., and Stephanopoulos, M.F. 1998. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A: Gen. 171: 13-29. doi: 10.1016/S0926-860X(98)00056-8
  31. Cao, J-L., Wang, Y., Zhang, T-Y., Wu, S-H., Yuan, Z-Y. 2008. Preparation Characterization and Catalytic behaviour of Nanostructured Mesoporous CuO/Ce0.8Zr0.2O2 Catalyst for Low Temperature CO Oxidation. Appl. Catal. B 78: 120-128. doi: 10.1016/j.apcatb.2007.09.007
  32. Zou, Z-Q., Meng, M., Guo, Li-H., and Zha, Yu-Q. 2009. Synthesis and Characterization of CuO/Ce1−xTixO2 Catalysts used for Low- Temperature CO Oxidation. J. Hazardous Materials, 163: 835–842. doi: 10.1016/j.jhazmat.2008.07.035
  33. Wang, J.B., Tsai, D.H., and Huang, T.J. 2002. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria. J. Catal. 208: 370-380. doi: 10.1006/jcat.2002.3580
  34. Bechara, R., Wrobel, G., Aissi, C.F., Guelton, M., Bonnelle, J.P., and Abou-Kais, A. 1990. Preparation and Characterization of Copper-Thorium Oxide Catalysts. 1. Solid Solution of Copper(I1) in Thoria: An ESR Study. Chem. Mater. 2: 518-552. doi: 10.1021/cm00011a010
  35. Marino, F., Descorme, C., and Duprez, D. 2005. Appl. Catal. B: Environ. Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). Appl. Catal. B: Environ. 58(3-4): 175-183. doi: 10.1016/j.apcatb.2004.12.008
  36. Sedmark, G., Hocevar, S., and Levec, J. 2004. Transient Kinetic Model of CO Oxidation Over a Nano-structured Cu0.1Ce0.9O2−y Catalyst. J. Catal. 222: 87-99. doi: 10.1016/j.jcat.2003.10.006
  37. Courtois, X., and Perrichon, V. 2005. Distinct Roles of Copper in Bimetallic Copper–Rhodium Three-Way Catalysts Deposited on Redox Supports. Appl. Catal. B: Environ. 57: 63–72. doi: 10.1016/j.apcatb.2004.10.010
  38. Avgouropoulos, G, and Ioannides, T. 2003. Selective CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea–Nitrate Combustion Method. Appl. Catal.A: Gen. 244: 155–167. doi: 10.1016/S0926-860X(02)00558-6
  39. Skårman, B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A., Reine Wallenberg, L.. 2002. Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. J. Catal. 211: 119-133. doi: 10.1016/S0021-9517(02)93735-8
  40. Arias, A., Martý´nez, A. B., Hungrý´a, Fernan´dez-Garcý´a, M., Conesa, J. C., and Munuera, G. 2004. Interfacial Redox Processes under CO/O2 in a Nanoceria-Supported Copper Oxide Catalyst. J. Phys. Chem. B 108: 17983-17991. doi: 10.1021/jp0465837
  41. Zheng, X., Wang, S., Wang, S., Zhang, S., Huang, W., and Wu, S. 2004. Copper Oxide Catalysts Supported on Ceria for Low-Temperature CO Oxidation. Catal. Commun. 5: 729–732. doi: 10.1016/j.catcom.2004.09.008
  42. Zheng, X., Zhang, X., Wang, X., Wang, S., and Wu, S. 2005. Preparation and Characterization of CuO/CeO2 Catalysts and their Application in Low-Temperature CO Oxidation. Appl. Catal. A: Gen. 295: 142-149. doi: 10.1016/j.apcata.2005.07.048
  43. Liu, W., Sarofim, A. F., and Stephanopoulos, M. F. 1994. Reduction of Sulfur Dioxide by Carbon Monoxide to Elemental Sulfur over Composite Oxide Catalysts. Appl. Catal. B. Environ. 4: 167-186. doi: 10.1016/0926-3373(94)00019-0
  44. Sedmark, G., and Hocevar, S. 2003. Kinetics of selective CO Oxidation in Excess of H2 Over the Nanostructured Cu0.1Ce0.9O2−y catalyst. J. Catal. 213: 135-150. doi: 10.1016/S0021-9517(02)00019-2
  45. Qin, J., Junfeng Lu, Minhua Cao and Changwen Hu. 2010. Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2: 2739–2743. doi: 10.1039/c0nr00446d
  46. Martınez-Arias, A., Ferna´ndez-Garcı´a, M., Hungrı´a, A. B., Iglesias-Juez, A., Ga´lvez, O., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. J. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. J. Catal. 214: 261-272. doi: 10.1016/S0021-9517(02)00084-2
  47. Moretti, E., Lenarda, M., Storaro, L., Talon, A., Frattini, R., Polizzi, S., Rodrıguez-Castellon, E., and Jimenez-Lopez, A. 2007. Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. Appl. Catal .B: Environ. 72: 149-156. doi: 10.1016/j.apcatb.2006.10.020
  48. Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., and Shen, W. 2005. CuO/CeO2 catalysts: Redox features and catalytic behaviours. Appl. Catal. A: Gen. 288: 116–125. doi: 10.1016/j.apcata.2005.04.024
  49. Skarman, B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A. and Wallenberg, L.R. 2002. Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and High-energy diffraction. J. Catal. 211: 119–133. doi: 10.1016/S0021-9517(02)93735-8
  50. Trovarelli, A., 1996. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38: 439–520. doi: 10.1080/01614949608006464
  51. Martınez-Arias, A., Fernandez-Garcia, M., Hungria, A.B., Iglesias-Juez, A., Galvez, O., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. J. Catal. 214: 261-272, doi: 10.1016/S0021-9517(02)00084-2
  52. Trovarelli, A., Leitenburg, C. D., Boaro, M., Dolcetti, G. 1999. The utilization of ceria in industrial catalysis. Catal. Today 50: 353-367. doi: 10.1016/S0920-5861(98)00515-X
  53. Hori, C.E., Permana, H., Ng, K.Y.S, Brenner, A., More, K., Rahmoeller, K.M., and Belton, D. 1998. Thermal stability of oxygen storage properties in a mixed CeO2–ZrO2 system. Appl. Catal. B: Environ. 16: 105–17. doi: 10.1016/S0926-3373(97)00060-X
  54. Di Monte, R., and KaŠpar, J. 2005. Nanostructured CeO2-ZrO2 mixed oxides, J. Mater. Chem. 15: 633–648. doi: 10.1039/b414244f
  55. Balducci, G., P. Fornasiero, R. Di Monte, J. Kaspar, S. Meriani & M. Graziani, 1995. An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperature. Catal. Lett. 33: 193-200. doi: 10.1007/BF00817058
  56. Michèle Pijolat, Marie Prin, Michel Soustelle, Olivier Touret and Patrice Nortier . 1995. Thermal stability of doped ceria: experiment and modelling. J. Chem. Soc. Faraday Trans. 91: 3941-3948. doi: 10.1039/FT9959103941
  57. Fornasiero, P., Balducci, G., Di Monte, R., Ka˘spar, J., Sergo, V., Gubitosa, G., Ferrero, A., and Graziani M.1996. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2. J. Catal. 164: 173–183
  58. Reddy, B. M., Reddy, G. K., Reddy L. H. and Ganesh I. 2009. Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Microwave-Assisted Combustion Method. The Open Phy. Chem. J., 3: 24-29. doi: 10.2174/1874067700903010024
  59. Chen, Y.-Z., Liaw, B.-J., Chang, W.-C., and Huang, C.-T. 2007. Selective oxidation of CO in excess hydrogen over CuO/CexZr1−xO2.Al2O3 catalysts. Intern. J. Hydrogen Energy 32: 4550 – 4558. doi: 10.1016/j.ijhydene.2007.06.021
  60. Xiao, L., Lin, P., Wang, W., Yang, Z., Fu, Y., and Yu, S. 2001. A novel preparation route of three-way catalysts. Topics in Catalysis. 16/17(1–4): 107-113. doi: 10.1023/A:1016691000226
  61. Martınez-Arias, A., Fernan˜dez-Garcı´a, M., Ga´lvez, O., Coronado, J. M., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. 2000. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. J. Catal. 195: 207–216. doi: 10.1006/jcat.2000.2981
  62. Aldridge, J.K.W. 2011. Heterogeneous CuMn2O4, Pt, Pd, and SnO2 catalysts for ambient temperature oxidation of carbon monoxide. Ph.D. Thesis, Cardiff University, United Kingdom
  63. Wang, S.-P., Zheng, X.-C., Wang, X.-Y., Wang, S.-R., Zhang, S.-M., Yu, L.-H., Huang, W.-P., and Wu, S.-H. 2005. Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts for low-temperature CO oxidation. Catal. Lett. 105(3–4): 163-168. doi: 10.1007/s10562-005-8686-5
  64. J.L. Ayastuy, A. Gurbani, M.P. González-Marcos, M.A. Gutiérrez-Ortiz. 2010. CO oxidation on CeXZr1−XO2-supported CuO catalysts: Correlation between activity and support composition. Appl. Catal. A: Gen. 387 119–128. doi: 10.1016/j.apcata.2010.08.015
  65. M. Shelef, G.W. Graham, R.W. McCabe, in: G.J. Trovarelli, Hutchings (Eds.), Catalysis by Ceria and Related Materials, Catalytic Science Series, vol. 2, Imperial College Press, London, 2002, pp. 343–376
  66. Florian Huber, Hilde Venvik, Magnus Rønning, John Walmsley, Anders Holmen. 2008. Preparation and characterization of nanocrystalline, high-surface area Cu Ce Zr mixed oxide catalysts from homogeneous co-precipitation. Chem. Eng. J. 137: 686–702. doi: 10.1016/j.cej.2007.07.025
  67. Prasad, R., and Rattan, G. 2010. Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review. Bull. Chem. React. Eng. Catal. 5 (1): 7–30. doi: 10.9767/bcrec.5.1.774.7-30
  68. Rattan, G. 2011. Oxidation of Carbon Monoxide over Copper based Catalysts: A Vehicular Pollution Control Approach. Ph. D. Thesis, Panjab University, India
  69. Qing Liang, Xiaodong Wu, Duan Weng, Zhenxiang Lu. 2008. Selective oxidation of soot over Cu doped ceria/ceria–zirconia catalysts. Catal. Commun. 9 (2008) 202–206. doi: 10.1016/j.catcom.2007.06.007
  70. Liu, Y., Fu, Q., and Stephanopoulos, M. F. 2004. Preferential Oxidation of CO in H2 over CuOCeO2 Catalysts. Catal. Today 93–95: 241-246. doi: 10.1016/j.cattod.2004.06.049
  71. Prasad, R., and Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bull. Chem. React. Eng. Catal. 4(1): 5-9. doi: 10.9767/bcrec.4.1.1250.5-9
  72. Hu, Y., Dong, L., Shen, M., Liu, D., Wang, J., Ding, W., and Chen, Y. 2001. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Appl. Catal. B 31: 61-69. doi: 10.1016/S0926-3373(00)00269-1
  73. Damyanova, S., Perez, C., Schmal, M., and Bueno, J. 2002. Characterization of ceria-coated alumina carrier. Appl. Catal. A 234: 271-282, doi: 10.1016/S0926-860X(02)00233-8

Last update:

No citation recorded.

Last update:

No citation recorded.