

Research Article

Effect of Preparation Methods on Al_2O_3 Supported $\text{CuO}\text{-}\text{CeO}_2\text{-}\text{ZrO}_2$ Catalysts for CO Oxidation

Gaurav Rattan ¹, Ram Prasad ^{2*}, Ramesh C. Katyal ³

¹ Department of Polymer Science & Chemical Technology, DTU, Delhi 110042, India

² Department of Chemical Engineering & Technology, B.H.U., Varanasi 221005, India,

³ Department of Chemical Engineering & Technology, P.U., Chandigarh 160014, India

Received: 14th June 2012; Revised: 8th September 2012; Accepted: 19th September 2012

Abstract

To examine the effect of preparation methods, four catalyst samples having same composition ($\text{CuCe}_{5.17}\text{Zr}_{3.83}\text{O}_x/\text{g-Al}_2\text{O}_3$ (15wt%)) were prepared by four different methods for CO oxidation. The catalysts were prepared by co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, and characterized by BET, XRD, TGA/DSC and SEM. The air oxidation of CO was carried out in a tubular fixed bed reactor under the following operating conditions: catalyst weight of 100 mg, temperatures of ambient to 250 °C, pressure of atmospheric, 2.5% CO in air, total feed rate of 60 ml/min. It was observed that the catalytic activity greatly influenced by the preparation methods. The highest activity of the catalyst prepared by the sol gel method appeared to be associated with its largest BET surface area. All the four catalysts were active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. © 2012 BCREC UNDIP. All rights reserved

Keywords: CO oxidation, $\text{CuO}\text{-}\text{CeO}_2\text{-}\text{ZrO}_2/\text{Al}_2\text{O}_3$ Catalysts, preparation methods, characterization

How to Cite: G. Rattan, R. Prasad, R.C.Katyal. (2012). Effect of Preparation Methods on Al_2O_3 Supported $\text{CuO}\text{-}\text{CeO}_2\text{-}\text{ZrO}_2$ Catalysts for CO Oxidation. *Bulletin of Chemical Reaction Engineering & Catalysis*, 7(2): 112-123. (doi:10.9767/bcrec.7.2.3646.112-123)

Permalink/DOI: <http://dx.doi.org/10.9767/bcrec.7.2.3646.112-123>

1. Introduction

The catalytic oxidation of carbon monoxide to carbon dioxide:

is a very simple, straightforward single reaction (eqn. 1), and it has been investigated for several decades by many researchers [1-6] since the classic work of Langmuir [1] in 1922. Recently, CO oxidation has attracted renewed attention due to its importance in several areas of industrial

significance for understanding fundamental processes associated with methanol synthesis, the water-gas shift reaction, the reforming of alcohols, etc. [7]; search of new energy sources related to removal of CO in H₂ fuel cells [8]; environmental cleanliness such as residential and industrial air purification; respiratory protection gas masks for fire fighters, mine rescue applications and chemical warfare protection; automotive emissions control; clean-up of flue gases; etc. [9-12].

A large number of catalysts for CO oxidation

* Corresponding Author.

E-mail address: rprasad.che@itbhu.ac.in (R. Prasad)

Tel.: +91 9415268192

are reported in the literature which have been extensively reviewed [13-17] and can be classified in to three types: First type, noble metal (Pt, Pd, Rh) catalysts which are well-known CO oxidation catalysts with high activity and desirable temperature stability [2,14]. These catalysts exhibit very good activity in the temperature range of 150-250 °C.

However, the relatively high cost and limited availability of these metals may inhibit their large-scale applications. Thus, design and synthesis of more cost-effective and affordable noble metal-free catalysts are of particular interest [11]. Second type, gold catalysts are for room temperature oxidation of CO [12]. These catalysts have a potential to be practically applied in ambient conditions, especially in air purification systems and breathing apparatus. It is possible that gold could be usefully incorporated into automobile catalysts, considering that the price of other noble metals is rising rapidly. Third type, several kind of base metal oxide catalysts have been extensively studied for CO oxidation such as the oxide of Cu, Mn, Cr, Co, Ni, Fe, etc. alone or in combination [7,17].

Base-metal oxide being cheapest among other catalytic materials, have received considerable attention for CO oxidation. Copper oxide [9,18-20] and supported copper oxides [21-34] are known to be highly active for CO oxidation. The majority of the studies are devoted to supported copper oxide catalysts. The most often applied supports for such catalysts are the oxides: Al_2O_3 [20-22], SiO_2 [22], CeO_2 [22-33], ZrO_2 [30,31], TiO_2 [32], SmO_2 [33], ThO_2 [34], etc. As a support, CeO_2 plays an important role in $\text{Cu}-\text{CeO}_2$ catalyst that is reported to be very active for the complete CO oxidation, exhibiting a specific activity several orders of magnitude higher than that of conventional Cu-based catalysts and even comparable to precious metals [23,30,34,35]. Abundant availability of Cu and Ce, coupled with their lower costs compared to precious metals, make them strongly competitive. This type of composite catalyst also shows remarkably higher resistance to carbon dioxide, water poisoning, and sulphur compounds [36]. To date, there has been frequent most use of $\text{CuO}-\text{CeO}_2$ systems as additives to reduce the cost of noble metals in the three-way catalysts [37], for the purification of automotive exhaust gas. These have been thus widely studied with the aim to possibly replacing the expensive noble metal catalysts [23,24, 38-44].

Huang and Tsai [18] studied CO oxidation activities over unsupported Cu, Cu_2O , and CuO and reported the activity order as follows: $\text{Cu}_2\text{O} >$

$\text{Cu} > \text{CuO}$. Thus, Cu_2O exhibits the highest activity than the other two copper species. Qin et al. [45] reported the activity for ceria supported catalyst in the following order: $\text{CuO}-\text{CeO}_2 > \text{CuO} > \text{CeO}_2$. This fact is correlated with the synergistic interaction between CuO and CeO_2 , resulting in exceptional redox properties at the interface created between them, with both components being significantly more readily reduced or oxidized than the corresponding independent components²⁴. Further, Zhang et al. [27] reported that the reduced catalyst, $\text{Cu}-\text{CeO}_2$ is more active than $\text{CuO}-\text{CeO}_2$ for CO oxidation. Martinez-Arias et al. [46] concluded that the partially reduced state of the copper oxide phase and the redox properties at the copper-ceria interface are two factors contributing to CO oxidation. Liu and Stephanopoulos [23] proposed a reaction model, in which Cu^+ species were stabilized by the interaction between CuO and CeO_2 and the Cu^+ species provide surface sites for CO chemisorption while the CeO_2 provides the lattice active oxygen through a $\text{Ce}^{4+}/\text{Ce}^{3+}$ redox cycle for faster CO oxidation. Thus the high activity of partially reduced $\text{CuO}-\text{CeO}_2$ catalyst is attributed to the strong interaction and synergism between the copper oxide and ceria, with the active role of the pairs $\text{Ce}^{4+} + \text{Cu}^{1+}\text{Ce}^{3+} + \text{Cu}^{2+}$ [23,36]. The catalytic performance of copper oxide in CO oxidation is enhanced by the generation of oxygen vacancies in the support, which provokes higher oxygen mobility and diffusion from the lattice to the interface of copper oxide-ceria and high oxygen storage capability [47-50].

However, it is known that the pure CeO_2 has poor thermal stability [52]. Recently, it has been reported that the incorporation of ZrO_2 into CeO_2 not only increases thermal resistance of the resulting mixed oxide [53,54] but also improves other properties of the catalysts forming a Ce-Zr-O solid solution [55]. The main features which contribute to the success of these components are: (i) higher thermal resistance compared to conventional ZrO_2 -free three way catalyst (TWC) [56], (ii) a higher reduction efficiency of redox couple $\text{Ce}^{4+}/\text{Ce}^{3+}$ [57], (iii) excellent oxygen storage/release capacity (OSC), compared to pure ceria [58], (iv) increase the mobility of lattice oxygen [59] and (iv)the possibility of preventing the undesired formation during reaction of CeAlO_3 , which contributes to the deactivation of the TWC [60]. The modifications of these properties of the catalysts ultimately result in better performance in CO oxidation [61-63]. Thus, $\text{CeO}_2-\text{ZrO}_2$ mixed oxides are extensively used in TWC [54,64]. Cao et al. [62] reported that the synergistic effect between CuO and the $\text{Ce}_{0.8}\text{Zr}_{0.2}\text{O}_2$ support, the highly

dispersed CuO nano-particles, the meso-porous framework, the high-surface area and the uniform distribution of nano-scale particles size were responsible for the high catalytic activity of the catalysts for low temperature CO oxidation. Wang et al. [63] observed that the CuO/CeO₂ exhibited higher catalytic activity for CO oxidation than CuO/Ce_{0.8}Zr_{0.2}O₂ catalysts when the calcination temperature was lower than 600°C. However, the result was just the opposite when the catalysts calcined at 800°C. This indicated that CuO/Ce_{0.8}Zr_{0.2}O₂ had better thermal resistance than CuO/CeO₂ catalysts; higher thermal stability of the catalyst is more desirable than very high activity with lower stability.

The support has a strong influence on the activity of the catalysts [22,64]. Aguila et al. [22] studied the effect of the support, Al₂O₃, ZrO₂, and SiO₂, on the activity for CO oxidation of a series of CuO and CeO₂ monometallic and bimetallic catalysts prepared by co-impregnation of the support with the adequate amount of Cu and Ce nitrates to obtain a loading of 2% Cu and/or 8% Ce. They reported that the bimetallic supported catalysts followed the activity sequence CuO-CeO₂/SiO₂>CuO-CeO₂/ZrO₂> CuO-CeO₂/Al₂O₃. In the absence of CeO₂, the most active monometallic catalyst was the CuO/ZrO₂ system. The authors proposed that the different degree of interaction between CuO and CeO₂ particles, induced by the support, can explain the activity results for the bimetallic catalysts.

The CuO-CeO₂-ZrO₂ catalyst shows good performance in the CO oxidation and cheaper than precious metal catalysts, it could be made further cheaper using alumina support without sacrificing the performance in the reaction. Because of the abundant pores and large surface area present in alumina, it has a great potential in further improving the catalytic performance. The alumina wash-coated monolith has been used in TWC converters. However, little attention has been paid on the alumina supported CuO-CeO₂-ZrO₂ catalyst for CO oxidation. Further, it is a recognized fact that the method of preparation of the catalysts determines the dispersion and size distribution of metal crystallites, their spatial distribution on the support, the homogeneity of components, the morphology, etc. which in turn strongly affect the catalyst activity [45,66]. In recent years, there has been a significant progress towards understanding the relationship between the preparation method and the final properties of catalysts and catalytic supports. As a consequence, a variety of methodologies have been developed by different workers for the preparation of high activity CuO-

CeO₂ catalysts. Recently, the authors of this paper have reviewed seventeen methods of preparation of CuO-CeO₂ catalysts [67] and their various applications.

In spite of the more and more interest drawn on CuO-CeO₂-ZrO₂ catalysts for CO and other pollution abatement, and for various industrial applications, literatures on the selection of synthesis methods determining the physiochemical features or factors related to catalyst performance remain quite limited [63]. Additionally, little attention has been paid on the alumina supported CuO-CeO₂-ZrO₂ catalyst for CO oxidation. Therefore, keeping the mentioned facts in mind, the present investigation was undertaken to explore the significance of preparation methods on the morphology and performance of the alumina supported CuO-CeO₂-ZrO₂ catalyst for CO oxidation. For this purpose, CuO-CeO₂-ZrO₂/g-Al₂O₃ catalysts have been prepared by four different methods, characterized by various techniques and evaluated for CO oxidation.

2. Experimental

2.1. Catalyst Preparation

γ-alumina supported-copper-ceria-zirconia catalysts having identical composition with molar ratio of Cu/(Cu+Ce+Zr) = 0.1 and of Ce/Zr = 1.35 with 15 wt% g-Al₂O₃ (100–120 mesh size particles) were prepared using all AR-grade chemicals by four different methods, namely, Co-impregnation method (CI), Citric acid sol-gel method (SG), Urea-nitrate combustion method (UC), and Urea gelation co-precipitation method (UG). All the catalysts have identical composition represented by CuCe_{5.17}Zr_{3.83}O_x/g-Al₂O₃(15wt%). This composition was found to be optimum for CO oxidation during the Ph.D work of one of the authors [68].

2.1.1. Co-impregnation method

Co-impregnation method is the simplest method of catalyst preparation used in this study following the procedure described by Aguila et al. [22]. The Cu-Ce_{5.17}Zr_{3.83}O_x/g-Al₂O₃(15wt%) catalyst sample was prepared by co-impregnation on the requisite amount of support with a distilled water solution containing Cu(NO₃)₂.3H₂O, Ce(NO₃)₃.6H₂O and ZrO(NO₃)₂.H₂O, defined by above mentioned molar ratios. Then the resulting slurry was evaporation over a steam bath with constant stirring to near dryness. Final drying was carried out at 105 °C in an oven overnight, and calcined at 500 °C for 3 hours under static air in a muffle furnace. The

catalyst powders were cooled to room temperature in a decicator containing CaCl_2 and then kept in an air tight bottle. The sample was marked as Cat-CI.

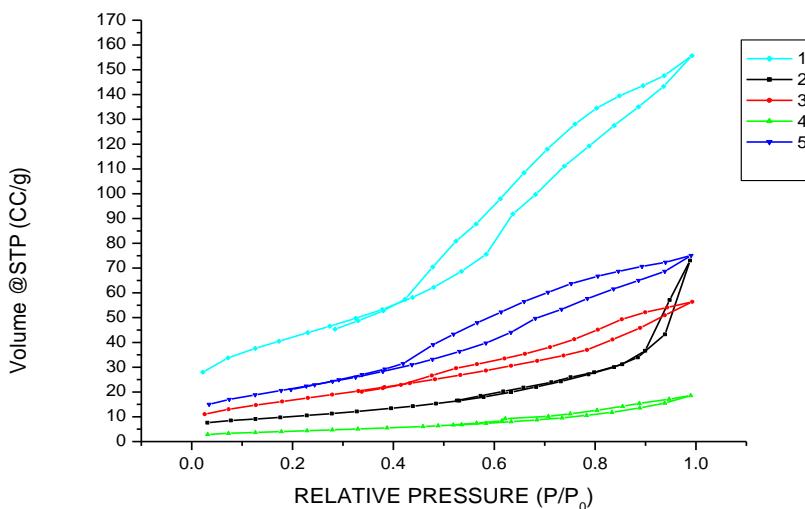
2.1.2. Citric acid sol-gel method

The method followed here is described by Liang et al. [69]. The nitrates of the components of the catalysts were dissolved in distilled water according to the required molar ratio. Citric acid was added as the complexing agent with a 1.3:1 ratio of the acid to metal ions including Ce^{3+} , Zr^{4+} and Cu^{2+} . Appropriate amount of polyglycol was added followed by the 10% citric acid and the blended solution was thoroughly mixed over a magnetic stirrer. Then required amount of alumina was added into the solution and heated at 80°C with constant stirring over a magnetic stirrer till transparent gel was formed. The resulting gel was dried at 105 °C overnight in an oven. The received powders were submitted to decomposition at 300 °C for 1 h and calcination at 500 °C for 3 h under static air in a muffle furnace. The catalyst powders were cooled to room temperature in a decicator containing CaCl_2 and then kept in an air tight bottle. The sample was named as Cat-SG.

2.1.3. Urea-nitrate combustion method

Urea combustion with nitrates is a single pot technique for the preparation of the catalysts. The catalyst sample was prepared following the method described by Avgouropoulos et al. [38]. Nitrates of copper, cerium and zirconium, and urea, $\text{CO}(\text{NH}_2)_2$ were mixed in appropriate molar ratio in a minimum volume of distilled water to obtain a transparent solution. The urea/nitrate stoichiometric molar ratio was equal to $5(3-x)/6$ where x denotes the $\text{Cu}/(\text{Cu}+\text{Ce}+\text{Zr})$ molar ratio. The urea/nitrate ratio taken was equal to 4.17 while $\text{Cu}/(\text{Cu}+\text{Ce}+\text{Zr})$ molar ratio was equal to 0.1. The mixed solution was heated for a few minutes at 80 °C and the resulting viscous gel was introduced in an open muffle furnace preheated at 500 °C, in a fuming cupboard. The gel started boiling with frothing and foaming and in a couple of minutes ignited spontaneously with rapid evolution of large quantity of gases, yielding a foamy voluminous powder. The powder obtained after combustion contains small amounts of carbonaceous residues. In order to burn off carbon residues, the powders were mixed thoroughly and further heated at 500 °C for 2.0 hr in the furnace. The catalyst sample obtained was stored in air-tight bottle after cooling. The sample was labeled as Cat-UC.

2.1.4. Urea gelation co-precipitation (UGC) method


The method described by Liu et al. [70] was followed to prepare the catalyst. The preparation procedure consisted of mixing the aqueous metal nitrate solutions in the ratios $\text{Ce}/\text{Zr} = 1.35$, $\text{Cu}/(\text{Cu}+\text{Ce}+\text{Zr}) = 0.1$ and urea/nitrate = 4.14. The solution was heated at 100 °C under vigorous stirring and distilled water was added, boiling the resulting gel for 8 hrs. at 100 °C. After that the resulting gel was filtered and the precipitates were washed twice with distilled water at 50–70 °C and then the cake was dried in an oven at 120 °C for overnight. After drying it was crushed into smaller particles and resulting powder was calcium in a muffle furnace at 500 °C for 3 hours. The sample was termed as Cat-UG.

2.2 Catalyst Characterization

Textural characterization of the catalyst samples were done by nitrogen adsorption-desorption at -196 °C using Quantachrome Nova 2200e surface area analyzer. X-ray diffraction (XRD) patterns of the catalysts were collected on a 'X'-Pert Pro Model, Panalytical Co. (Philips) Netherland, powder diffracto-meter using $\text{Cu K}\alpha$ radiation for crystal phase identification of the catalysts. The patterns were recorded at room temperature with a 2θ range from 20 to 80°. Images of the catalysts were obtained on a high-resolution SEM, Hitachi-3700 N, Japan for surface morphological studies of the catalysts. TGA/DSC thermograms of the catalysts precursors were recorded by Perkin Elmer, STA-6000, simultaneous thermal analyser.

2.3 Catalytic activity testing

The catalytic activity was evaluated in a compact tubular packed bed flow reactor [71] at atmospheric pressure in a temperature range of ambient to 300 °C. No pretreatment was applied before each catalytic test. A gas mixture of 2.0 % CO in air was fed at a total inlet flow rate of 60 ml min^{-1} (ambient temperature and pressure). Air fed was made free of moisture and CO_2 by passing it through CaO and KOH pellets drying towers. Hundred milligram of the catalyst was diluted to 5 ml with Al_2O_3 of same size (100-150 mesh) and placed into the reactor. It is well known that the presence of mass and heat transfer resistance may lead to under estimate the catalytic activities of catalysts for CO oxidation. In order to minimize the transfer limitations and thus differentiate the activity sequence of these catalysts, less mass of

Figure 1. N₂ adsorption-desorption isotherm : (1) γ -Al₂O₃, (2) Cat-CI, (3) Cat-UG, (4) Cat-UC, (5) cat-SG.

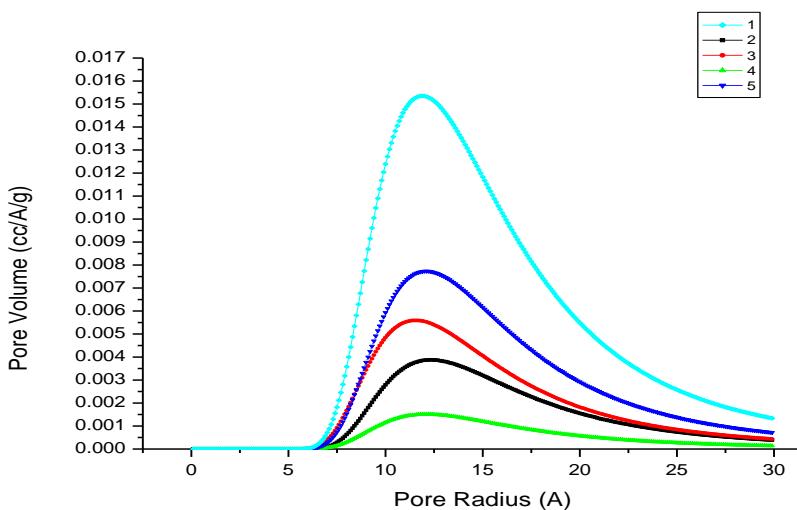
Table 1. Textural characteristic of the various catalysts and support, γ -Al₂O₃

Catalyst	S _{BET} (m ² /g)	Average pore Radius (Å)	Total pore volume (cc/g)
Cat-UG	61.592	28.32	0.087, <1319.8 Å
Cat-CI	35.900	62.95	0.113, <834.0 Å
Cat-SG	78.375	29.63	0.116, <1015.3 Å
Cat-UC	15.225	37.66	0.029, <932.3 Å
γ -Al ₂ O ₃	150.314	32.04	0.241, <1224.4 Å

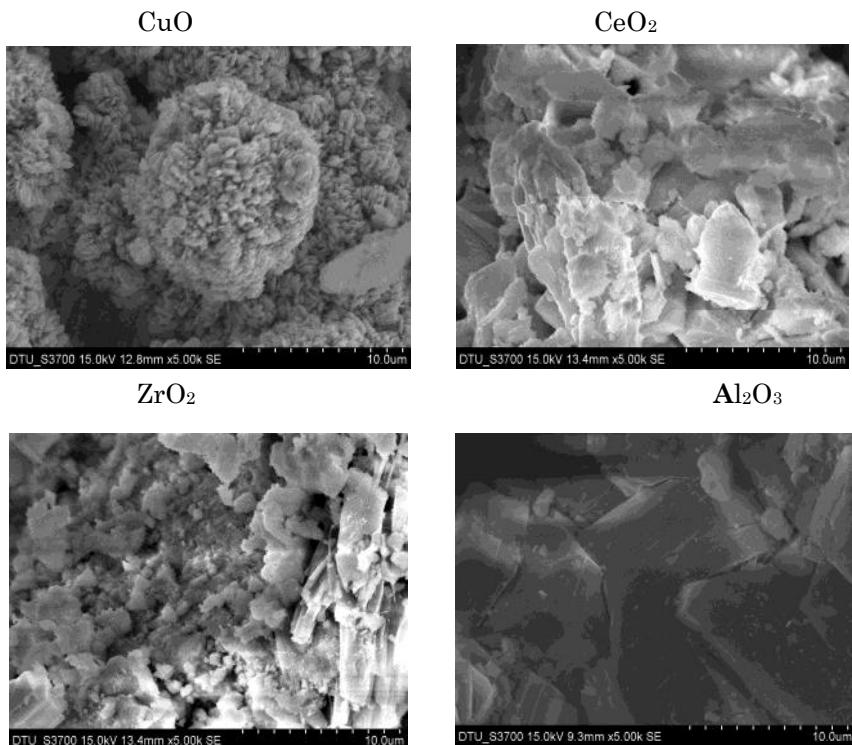
catalyst further diluted with inert material and relatively moderate flow rate were chosen in the catalytic tests. The catalytic experiments were carried out under steady state conditions. Typically, the reactor was heated to the desired temperature with the help of a microprocessor based temperature controller. A temperature control of $\pm 0.5^\circ\text{C}$ was achieved. After 60 min of steady state the effluent gases were analyzed online by a GC equipped with porapack Q column, FID detector and methanizer for the detection of CO and CO₂ using N₂ as the carrier gas. Oven, injector and detector temperatures were set at 60, 80 and 80 °C respectively. The activity was expressed by the conversion of CO calculated by the following formula (Eqn. 2):

$$X_{\text{CO}} = (C_{\text{COin}} - C_{\text{COout}}) / C_{\text{COin}} \quad (2)$$

Multiple samples of the outlet gas were taken and averaged to ensure that the catalytic system had reached steady state. The conversion calculated using the integrated peak area differences between the CO fed initially and the effluent CO from the reactor with an accuracy of about 1%. Temperatures for the light off, 50%


conversion of CO and 100% conversion of CO: T₅₀ and T₁₀₀ were used as an index to evaluate the activity of the catalysts.

3. Results and Discussion


3.1 Effect of preparation methods on physico-chemical properties of the catalysts

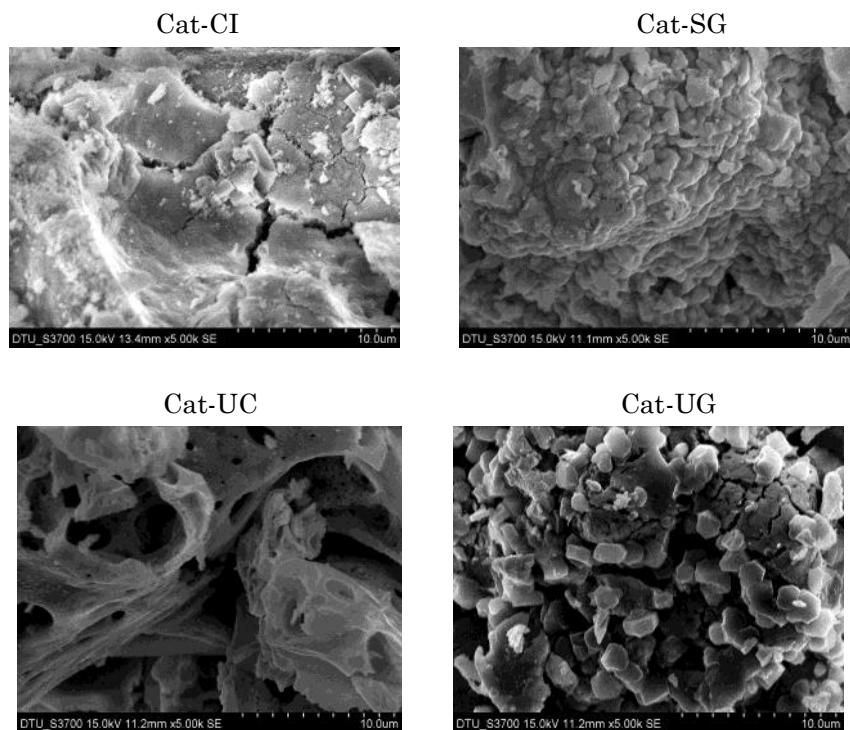
The nitrogen adsorption-desorption isotherms of the support, γ -Al₂O₃ and catalyst, Cu-Ce_{5.17}-Zr_{3.83}O_x/g-Al₂O₃ (15wt%) prepared by sol-gel method are shown in Figure 1. The isotherms of the support and prepared catalyst are of type II according to De Boer classification. A hysteresis loop with a sloping adsorption curve and desorption curves is observed at high relative pressure (P/P₀) range. The hysteresis loop of Cat-CI is relatively very short in comparison to other catalysts. The textual properties of the support and prepared catalysts by N₂ sorptometry are listed in Table 1.

The pore volume was measured by N₂ sorption at its relative pressure, P/P₀ = 0.992. It is evident from Table 1 that the textural properties (BET surface area, average pore radius and pore volume) vary significantly for the support and catalysts prepared by different methods. The catalysts areas were several folds less than the support, γ -Al₂O₃

Figure 2. Pore size distribution of (1) γ -Al₂O₃, (2) Cat-CI, (3) Cat-UG, (4) Cat-UC, (5) cat-SG.

Figure 3. SEM micrographs of CuO, CeO₂ and ZrO₂ obtained by decomposition of respective nitrates at 500 °C, and γ -Al₂O₃ support.

depending upon the method of preparation. This observation is in agreement with literature reports [72]. Among the four methods used, UC method has the smallest specific area.


The SEM micrographs of CuO, CeO₂ and ZrO₂ obtained by decomposition of respective nitrates at 500°C, as well as of γ -Al₂O₃ are shown in Figure 3. The SEM micrographs of Cu-Ce_{5.17}-Zr_{3.83}O₃/ γ -Al₂O₃ (15wt%) catalysts prepared with different methods are shown in Figure 4. The micrographs

catalyst (15.225 m²/g), and SG method has the

highest specific area catalyst (78.373 m²/g). Other two samples Cat-UG and Cat-CI have specific area of 61.592 and 35.900 m²/g respectively.

Pore size distribution of the support and catalysts are shown in Figure 2. It can be seen that pores are distributed in a narrow range of 7-40 Å, with dominating pore radius around 12 Å in all the catalysts as well as alumina support used in the catalyst preparation.

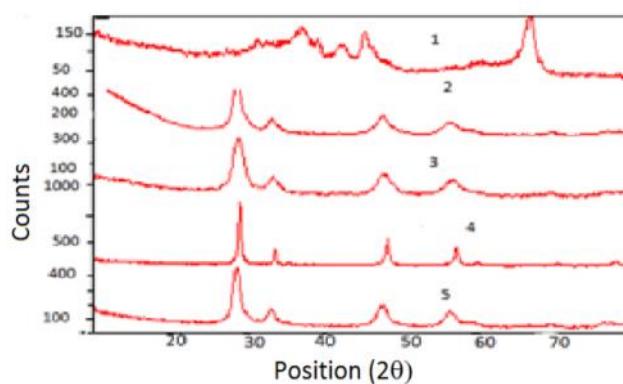

As can be seen, with Cat-CI and Cat-SG the

Figure 4. SEM micrographs of catalysts; Cat-CI, Cat-SG, Cat-UC and Cat-UG

former surface has larger block and multiple cracks but the latter were much smaller highly porous grains with uniform distribution as marigold flower. Cat-UC shows sintered bulk particles having spongy large voids with irregular sizes and shape. The Cat-SG synthesized by the sol-gel method presented a strong tendency to the state of particles agglomeration, forming noticeably porous structures. This morphology aspect is very appropriate from the point of view that potential catalytic properties are expected of these materials. It is worth pointing out that the Cat-SG presents a relatively homogeneous size distribution of agglomerates. The surface morphologies of Cat-SG and Cat-UG are somewhat similar except little bigger particles are present in the latter one.

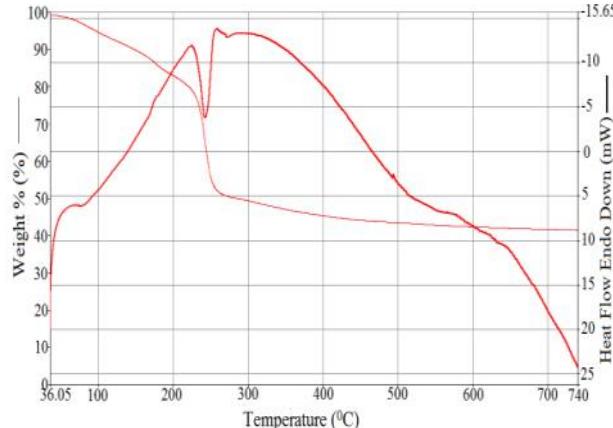
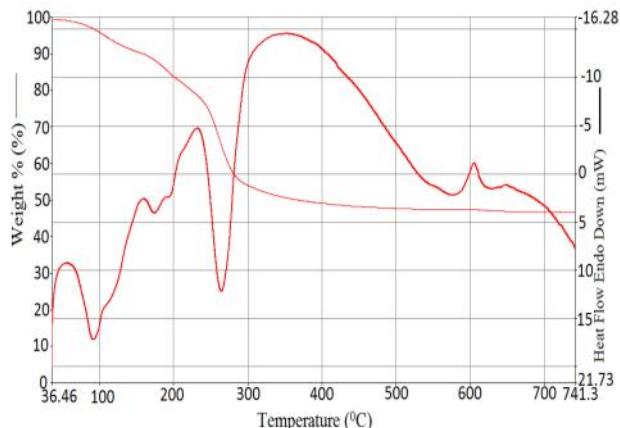
X-ray diffraction patterns of the support γ - Al_2O_3 and the catalysts prepared by four different methods are shown in Fig. 5. The main reflections at 29.12, 33.23, 48.00 and 56.89 of 2θ in the XRD patterns of all the samples correspond to the cubic, fluorite structure typical of CeO_2 [73], and there is no indication of the presence of other phases. From Figure 5, it can be seen that no reflections characteristic of CuO structure is present, which may be due to the high dispersion of too small particle sizes of the CuO on the surface of the support to be identified by the X-ray diffraction method. It is important to note that the main alumina peaks at ($2\theta = 45.8^\circ$ and 66.8°) disappeared in all the catalyst samples. This

Figure 5. XRD patterns of (1) γ - Al_2O_3 , (2) Cat-CI, (3) Cat-SG, (4) Cat-UC, (5) cat-UG.

indicates that there is no segregation of phases in the synthesized catalytic systems.

The diffraction patterns of all the catalyst samples are similar, except that diffraction peaks of Cat-UC, which are sharp and intense than for others. This may be attributable to the bigger crystalline phase resulted by urea combustion method whereas catalysts prepared by other methods show broad peaks suggesting the presence of smaller size and less crystalline phase. This is probably due to higher local temperature of the content of the pot during uncontrolled combustion in the furnace maintained at 500 °C, which causes sintering. This is evident by the reported lowest BET surface area and also clearly seen in the SEM micrograph of the Cat-UC.

In order to determine the thermal decomposition temperature, TG-DSC profiles of the Cu-Ce_{5.17}Zr_{3.83}O_x/g-Al₂O₃ (15 wt%) catalysts' precursors, used for the preparation by co-impregnation and sol-gel method, were measured, as shown in Figure 6. It can be seen that the endothermic peak between 50 and 200 °C in the DSC curve,



3.2 Effect of preparation methods on Activity of the catalysts

The results of CO oxidation activity as a function of temperature of the catalysts having same composition, CuCe_{5.17}Zr_{3.83}O_x/gAl₂O₃ (15 wt%) prepared by four different methods are displayed in Figure 7 and also given in Table 2. A significant influence of the preparative method on the activity of the different catalysts is evident. It is very clear that the catalyst prepared by sol-gel method (Cat-SG) exhibited the highest activity showing the lowest temperature, T₁₀₀ for complete conversion of CO

at 190 °C in comparison to the catalysts prepared by the other methods. The temperature T₁₀₀ (225 °C) of Cat-CI was about 5 °C less than that of Cat-UG (230 °C). The activity of Cat-UC was somewhat inferior compared with other catalysts, showing T₁₀₀ at the highest temperature of 250 °C. Although at lower temperature (<110 °C) Cat-UC showed the best activity but beyond this temperature inferior activity could be seen from Figure 7 for this catalyst. The Cat-SG exhibited the highest activity as this method offers better control over textural characteristics. It is evident from Table 2 that the BET accompanied by a significant weight loss on TG, was attributed to the evaporation of the adsorbed water and structure water. The main weight loss between 200 and 400 °C on the TG curve, accompanied with a strong exothermic peak at 225 °C and a shoulder around 255 °C, can be attributed to the decomposition and the combustion of carbon species. The total weight loss of 52.3 and 57.5% occurred in case of catalyst precursors prepared by co-impregnation and sol-gel methods respectively. No crystalline phase transformation is observed below 500 °C. No distinct weight loss can be seen above 500 °C, which indicates that the carbon species in the samples could be completely removed after calcinations at 500 °C in air. Since, calcinations at high

Table 2. Effect of catalyst preparation method on the light-off temperature of the catalysts

Preparation Method	Temperature (°C)		
	T ₁₀	T ₅₀	T ₁₀₀
CI	96	158	226
SG	75	137	190
UC	37	205	250
UG	50	180	230

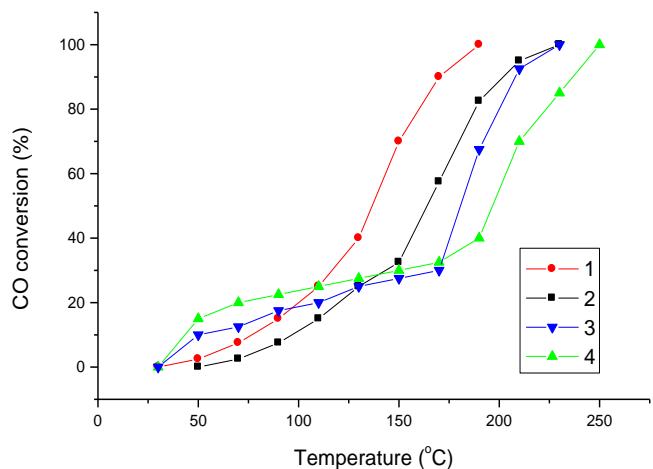
Figure 6. TGA/DSC thermograms of the precursors of CuCe_{5.17}Zr_{3.83}O_x/gAl₂O₃ (15 wt%) catalysts prepared by (1) co-impregnation and (2) sol-gel methods.

temperature could result in decline in the surface area and increase in the crystallite size of catalysts, also taking into account the TG/DSC results the optimum calcinations temperature in air was found to be 500 °C. surface area (78.375 m²/g) of this catalyst is the highest in comparison to the other catalysts studied. On the other hand the inferior activity of Cat-UC could be due to its lowest BET surface area (15.225 m²/g).

Cat-UC has lower light-off temperature (LOT) at lower conversions than that of Cat-SG, this is probably Cat-UC has more energetic active sites but lower site density than that of Cat-SG. More energetic active sites of Cat-UC oxidizes CO at lower temperature than Cat-SG. This is evidenced by comparative BET surface areas. S_{BET} for Cat-SG is more than five times of Cat-UC. Higher active site density of relatively less energetic sites of Cat-SG than Cat-UC perhaps resulted lower light off temperature at higher conversions for Cat-SG.

In sol-gel method hydrophilic colloidal solutions are formed of micelles that remain separated because of electrical charges on their surfaces and in the surrounding solution. These charges create repelling forces which prohibit coagulation of the micelles. Such micelles are produced via chemical reactions of polymerization and poly-condensation. Thus, highly dispersed catalyst is resulted by sol-gel method. The Cat-UC synthesized by urea combustion method possessed sintered large particles probably due to higher local temperature of the content of the pot during uncontrolled combustion in the furnace maintained at 500 °C, which causes sintering. This is clearly seen in the SEM micrograph, evident by the sharp and intense

diffraction peaks and lowest BET surface area of the Cat-UC. Therefore, sol-gel is the best method of preparation of the catalyst, CuCe_{5.17}Zr_{3.83}O_x/gAl₂O₃ (15 wt%) for the oxidation of CO. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. All the four catalysts are active for CO oxidation and did not show deactivation of catalytic activity for 50 hours of continuous runs at 200 °C, of course at different levels of CO conversions: Cat-SG 100%, Cat-CI 89%, Cat-UG 80%, and Cat-UC 55%.


4. Conclusions

Four catalysts sample having same composition (CuCe_{5.17}Zr_{3.83}O_x/g-Al₂O₃ (15 wt%) have been prepared by four different methods and examined for CO oxidation. The catalytic performance for the said reaction and morphology of the catalysts strongly depend upon preparation methods. The catalyst prepared by sol gel method shows the best catalytic performance, this is ascribed to uniform dispersion of copper species in the catalyst. The catalyst sample prepared by urea nitrate combustion method presents lowest performance due to sintering. The ranking order of the preparation methods of the catalyst is as follows: sol-gel > co-impregnation > urea gelation > urea nitrate combustion. All the four catalysts are active for CO oxidation and do not show deactivation of catalytic activity for 50 hours of continuous run at 200 °C, of course at different levels of CO conversions.

Acknowledgements

The authors gratefully acknowledge the Department of Science & Technology, Government of India, for the use of equipments and instrument provided under the SERC (Engineering Science) Project Grant NO. SR/S3/ME/027/2006.

References

Figure 7. Effect of preparation methods on CO oxidation activity of the catalysts, (1) Cat-SG, (2) Cat-CI, (3) Cat-UG and (4) Cat-UC

- [1] Langmuir, I. 1922. The mechanism of the catalytic action of platinum in the reactions $2\text{CO} + \text{O}_2 = 2\text{CO}_2$ and $2\text{H}_2 + \text{O}_2 = 2\text{H}_2\text{O}$. *Trans. Faraday Soc* 17: 621-654.
- [2] Taylor, S.H., Hutchings, G.J., and Mirzaei, A.A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide Oxidation. *Chem. Commun.* 1373-1374.
- [3] Santra, A.K., and Goodman, D.W. 2002. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures. *Electrochimica Acta*. 47: 3595-3609.

[4] Khoudiakov, M., and Gupta, M.C., and Deevi, S. 2004. Au/Fe₂O₃ nanocatalysts for CO oxidation by a deposition – precipitation technique. *Nanotechnology*. 15: 987–990.

[5] Yang, F., Graciani, J., Evans, J., Liu, P., Hrbek, J., Sanz, J. F., and Jose A. 2011. Rodriguez. CO Oxidation on Inverse CeO_x/Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O₂. *J. Am. Chem. Soc.* 133: 3444–3451.

[6] Liu, X., Wang, A., Li, L., Zhang, T., Moub, C.-Y., and Lee, J.-F. 2011. Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. *J. Catal.* 278: 288–296.

[7] White, B. E. 2007. Chemistry and Catalysis at the Surface of Nanomaterials, *Ph.D. Thesis*, Graduate School of Arts and Sciences, Columbia University.

[8] Choi, Y., and Stenger, H.G. 2004. Kinetics, Simulation and Insights for CO Selective Oxidation in Fuel Cell Applications, *J. Power Sources* 129: 246-254.

[9] Pillai, U. R., and Deevi, S. 2006. Room temperature oxidation of carbon monoxide over copper oxide catalyst. *Appl. Catal. B: Environ.* 64: 146–151.

[10] Cole, K. J., Carley, A. F., Crudace, M. J., Clarke, M., Taylor, S. H., and Hutchings, G. J. 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. *Catal. Lett.* 138:143–147.

[11] Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W., and Goldfarb, D. 2000. Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. *Chem. Mater.* 12: 3715-3725.

[12] Rynkowski, J. M. and Dobrosz-Gómez, I. 2009. Ceria-zirconia supported gold catalysts. *Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia*. 14: 197-217.

[13] Katz, M. 1953. The heterogeneous oxidation of carbon monoxide. *Adv. Catal.* 5: 177-216.

[14] Kummer, J. T. 1986. Use of Noble Metals in Automobile Exhaust Catalysts. *J. Phys. Chem.* 90: 4747-4752.

[15] Liu, Z.-P., and Hu, P. 2004. CO oxidation and NO reduction on metal surfaces: density functional theory investigations. *Topics in Catal.* 28(1-4): 71-78.

[16] Bond, G. C., and Thompson, D. T. 2000. Gold-Catalysed Oxidation of Carbon Monoxide. *Gold Bulletin* 33(2): 41-50.

[17] Royer, S., and Duprez, D. 2011. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. *Chem. Catal. Chem.* 3: 24–65.

[18] Huang, T.-J., and Tsai, D.-H. 2003. CO oxidation behavior of copper and copper oxides. *Catal. Lett.* 87: 173-178.

[19] Kummer, J.T. 1980. Catalysts for Automobile Emissions Control. *Prog. Energy Combust. Sci.* 6: 177-199.

[20] Huang, T.-J., and Yu, T.-C. 1991. Calcination conditions on copper/alumina catalysts for carbon monoxide oxidation and nitric oxide reduction. *Appl. Catal.* 71: 275-282.

[21] Jiang, X-Y., Zhou, R-X., Pan, P., Zhu, B., Yuan, X-X., and Zheng, X-M. 1997. Effect of the addition of La₂O₃ on TPR and TPD of CuO/y-Al₂O₃ catalysts. *Appl. Catal. A: Gen.* 150: 131-141.

[22] Aguilera, G., Gracia, F., and Araya, P. 2008. CuO and CeO₂ Catalysts Supported on Al₂O₃, ZrO₂, and SiO₂ in the Oxidation of CO at Low Temperature. *Appl. Catal. A: Gen.* 343: 16–24.

[23] Liu, W., and Flytzani-Stephanopoulos, M. 1995. Total Oxidation of Carbon Monoxide and Methane over Transition Metal-fluorite Oxide Composite Catalysts I. Catalyst Composition and Activity. *J. Catal.* 153: 304-316.

[24] Luo, M. F., Zhong, Y. J., Yuan, X. X., and Zheng, X. M. 1997. TPR and TPD Studies of CuO/CeO₂ Catalysts for Low Temperature CO Oxidation. *Appl. Catal. A: Gen.* 162: 121-131.

[25] Zeng, S., Bai, X., Wang X., Yu W., and Liu, Y. 2006. Valence State of Active Copper in CuO_x/CeO₂ catalysts for CO oxidation. *J. Rare Earths.* 24 (2): 177-181

[26] Zheng, X., Zhang, X., Wang, S., Wang, X., and Wu, S. 2007. Effect of Addition of Base on Ceria and Reactivity of CuO/CeO₂ Catalysts for Low-Temperature CO Oxidation. *J. Natural Gas Chemistry* 16: 179–185.

[27] Zhang, S-M., Huang, W-P., Qiu, X-H., Li, B-Q., Zheng, X-C., and Wu, S-H. 2002. Comparative Study On Catalytic Properties of Low-Temperature CO Oxidation of Cu/CeO₂ and CuO/CeO₂ Prepared via Solvated Metal Atom Impregnation and Conventional Impregnation. *Catal. Letters* 80: 41-46.

[28] Zhou, K., Xu, R., Sun, X., Chen, H., Tian, Q., Shen, D., and Lia, Y. 2005. Favorable Synergetic Effects Between CuO and the Reactive Planes of Ceria Nanorods. *Catal. Letters* 101: 169-173.

[29] Sundar, R. S., and Deevi, S. 2006. CO Oxidation Activity of Cu–CeO₂ Nano-Composite Catalysts Prepared by Laser Vaporization and Controlled Condensation. *J. Nanoparticle Research* 8: 497–509.

[30] Kundakovic, L.K., and Stephanopoulos, M.F. 1998. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. *Appl. Catal. A: Gen.* 171: 13-29.

[31] Cao, J-L., Wang, Y., Zhang, T-Y., Wu, S-H., Yuan, Z-Y. 2008. Preparation Characterization and Catalytic behaviour of Nanostructured Mesoporous CuO/Ce_{0.8}Zr_{0.2}O₂ Catalyst for Low Temperature CO Oxidation. *Appl. Catal. B* 78: 120-128.

[32] Zou, Z-Q., Meng, M., Guo, Li-H., and Zha, Yu-Q. 2009. Synthesis and Characterization of CuO/Ce_{1-x}Ti_xO₂ Catalysts used for Low-Temperature CO Oxidation. *J. Hazardous Materials*, 163: 835-842.

[33] Wang, J.B., Tsai, D.H., and Huang, T.J. 2002. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria. *J. Catal.* 208: 370-380.

[34] Bechara, R., Wrobel, G., Aissi, C.F., Guelton, M., Bonnelle, J.P., and Abou-Kais, A. 1990. Preparation and Characterization of Copper-Thorium Oxide Catalysts. 1. Solid Solution of Copper(II) in Thoria: An ESR Study. *Chem. Mater.* 2: 518-552.

[35] Marino, F., Descorme, C., and Duprez, D. 2005. *Appl. Catal. B: Environ.* Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). *Appl. Catal. B: Environ.* 58(3-4): 175-183.

[36] Sedmark, G., Hocevar, S., and Levec, J. 2004. Transient Kinetic Model of CO Oxidation Over a Nano-structured Cu_{0.1}Ce_{0.9}O_{2-y} Catalyst. *J. Catal.* 222: 87-99.

[37] Courtois, X., and Perrichon, V. 2005. Distinct Roles of Copper in Bimetallic Copper-Rhodium Three-Way Catalysts Deposited on Redox Supports. *Appl. Catal. B: Environ.* 57: 63-72.

[38] Avgouropoulos, G., and Ioannides, T. 2003. Selective CO Oxidation over CuO-CeO₂ Catalysts Prepared via the Urea-Nitrate Combustion Method. *Appl. Catal. A: Gen.* 244: 155-167.

[39] Bjo rn, S., Didier, G., Robert, E. B., Andreas, H., Arne, A., and Wallenberg, L.R. 2002. Carbon Monoxide Oxidation on Nanostructured CuOx/CeO₂ Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. *J. Catal.* 211: 119-133.

[40] Arias, A., Mart nez, A. B., Hungr a, Fernan dez-Garc a, M., Conesa, J. C., and Munuera, G. 2004. Interfacial Redox Processes under CO/O₂ in a Nanoceria-Supported Copper Oxide Catalyst. *J. Phys. Chem. B* 108: 17983-17991.

[41] Zheng, X., Wang, S., Wang, S., Zhang, S., Huang, W., and Wu, S. 2004. Copper Oxide Catalysts Supported on Ceria for Low-Temperature CO Oxidation. *Catal. Commun.* 5: 729-732.

[42] Zheng, X., Zhang, X., Wang, X., Wang, S., and Wu, S. 2005. Preparation and Characterization of CuO/CeO₂ Catalysts and their Application in Low-Temperature CO Oxidation. *Appl. Catal. A: Gen.* 295: 142-149.

[43] Liu, W., Sarofim, A. F., and Stephanopoulos, M. F. 1994. Reduction of Sulfur Dioxide by Carbon Monoxide to Elemental Sulfur over Composite Oxide Catalysts. *Appl. Catal. B: Environ.* 4: 167-186.

[44] Sedmark, G., and Hocevar, S. 2003. Kinetics of selective CO Oxidation in Excess of H₂ Over the Nanostructured Cu_{0.1}Ce_{0.9}O_{2-y} catalyst. *J. Catal.* 213: 135-150.

[45] Qin, J., Junfeng Lu, Minhua Cao and Changwen Hu. 2010. Synthesis of porous CuO-CeO₂ nanospheres with an enhanced low-temperature CO oxidation activity. *Nanoscale* 2: 2739-2743.

[46] Marti nez-Arias, A., Ferna ndez-Garc a, M., Hungr a, A. B., Iglesias-Juez, A., Galvez, O., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. J. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO₄. *J. Catal.* 214: 261-272.

[47] Moretti, E., Lenarda, M., Storaro, L., Talon, A., Frattini, R., Polizzi, S., Rodr guez-Castellon, E., and Jimenez-Lopez, A. 2007. Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. *Appl. Catal. B: Environ.* 72: 149-156.

[48] Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., and Shen, W. 2005. CuO/CeO₂ catalysts: Redox features and catalytic behaviours. *Appl. Catal. A: Gen.* 288: 116-125.

[49] Skarman B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A. and Wallenberg, L.R. 2002. Carbon monoxide oxidation on nanostructured CuOx/CeO₂ composite particles characterized by HREM, XPS, XAS, and High-energy diffraction. *J. Catal.* 211: 119-133.

[50] Trovarelli A., 1996. Catalytic properties of ceria and CeO₂-containing materials. *Catal. Rev. Sci. Eng.* 38: 439-520.

[51] Martinez-Arias, A., Fernandez-Garcia, M., Hungria, A.B., Iglesias-Juez, A., Galvez, O., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G. 2003. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO₄. *J. Catal.* 214: 261-272.

[52] Trovarelli, A., Leitenburg, C. D., Boaro, M., Dolcetti, G. 1999. The utilization of ceria in industrial catalysis. *Catal. Today* 50: 353-367.

[53] Hori, C.E., Permana, H., Ng, K.Y.S, Brenner, A., More, K., Rahmoeller, K.M., and Belton, D. 1998. Thermal stability of oxygen storage properties in a mixed $\text{CeO}_2\text{-ZrO}_2$ system. *Appl. Catal. B: Environ.* 16: 105-17.

[54] Di Monte, R., and Kašpar, J. 2005. Nanostructured $\text{CeO}_2\text{-ZrO}_2$ mixed oxides, *J. Mater. Chem.* 15: 633-648.

[55] Balducci, G., P. Fornasiero, R. Di Monte, J. Kaspar, S. Meriani & M. Graziani, 1995. An unusual promotion of the redox behaviour of $\text{CeO}_2\text{-ZrO}_2$ solid solutions upon sintering at high temperature. *Catal. Lett.* 33: 193-200.

[56] Michèle Pijolat, Marie Prin, Michel Soustelle, Olivier Touret and Patrice Nortier . 1995. Thermal stability of doped ceria: experiment and modelling. *J. Chem. Soc. Faraday Trans.* 91: 3941-3948.

[57] Fornasiero, P., Balducci, G., Di Monte, R., Kašpar, J., Sergio, V., Gubitosa, G., Ferrero, A., and Graziani M.1996. Modification of the Redox Behaviour of CeO_2 Induced by Structural Doping with ZrO_2 . *J. Catal.* 164: 173-183.

[58] Reddy, B. M., Reddy, G. K., Reddy L. H. and Ganesh I. 2009. Synthesis of Nanosized Ceria-Zirconia Solid Solutions by a Rapid Microwave-Assisted Combustion Method. *The Open Phys. Chem. J.*, 3: 24-29.

[59] Chen, Y.-Z., Liaw, B.-J., Chang, W.-C., and Huang, C.-T. 2007. Selective oxidation of CO in excess hydrogen over $\text{CuO/Ce}_x\text{Zr}_{1-x}\text{O}_2\text{-Al}_2\text{O}_3$ catalysts. *Intern. J. Hydrogen Energy* 32: 4550 – 4558.

[60] Xiao, L., Lin, P., Wang, W., Yang, Z., Fu, Y., and Yu, S. 2001. A novel preparation route of three-way catalysts. *Topics in Catalysis.* 16/17(1-4): 107-113.

[61] Martínez-Arias, A., Fernández-García, M., Galvez, O., Coronado, J. M., Anderson, J. A., Conesa, J. C., Soria, J., Munuera, G. 2000. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO_2 and CuO/ZrCeO_4 Catalysts. *J. Catal.* 195: 207-216.

[62] Aldridge, J.K.W. 2011. Heterogeneous CuMn_2O_4 , Pt, Pd, and SnO_2 catalysts for ambient temperature oxidation of carbon monoxide. Ph.D. Thesis, Cardiff University, United Kingdom.

[63] Wang, S.-P., Zheng, X.-C., Wang, X.-Y., Wang, S.-R., Zhang, S.-M., Yu, L.-H., Huang, W.-P., and Wu, S.-H. 2005. Comparison of $\text{CuO/Ce}_{0.8}\text{Zr}_{0.2}\text{O}_2$ and CuO/CeO_2 catalysts for low-temperature CO oxidation. *Catal. Lett.* 105(3-4): 163-168.

[64] J.L. Ayastuy, A. Gurbani, M.P. González-Marcos, M.A. Gutiérrez-Ortiz. 2010. CO oxidation on $\text{CeZr}_{1-x}\text{O}_2$ -supported CuO catalysts: Correlation between activity and support composition. *Appl. Catal. A: Gen.* 387 119-128.

[65] M. Shelef, G.W. Graham, R.W. McCabe, in: G.J. Trovarelli, Hutchings (Eds.), *Catalysis by Ceria and Related Materials*, Catalytic Science Series, vol. 2, Imperial College Press, London, 2002, pp. 343-376

[66] Florian Huber, Hilde Venvik, Magnus Rønning, John Walmsley, Anders Holmen. 2008. Preparation and characterization of nanocrystalline, high-surface area Cu Ce Zr mixed oxide catalysts from homogeneous co-precipitation. *Chem. Eng. J.* 137: 686-702.

[67] Prasad, R., and Rattan, G. 2010. Preparation Methods and Applications of CuO-CeO_2 Catalysts: A Short Review. *Bull. Chem. React. Eng. Catal.* 5 (1): 7-30.

[68] Rattan, G. 2011. Oxidation of Carbon Monoxide over Copper based Catalysts: A Vehicular Pollution Control Approach. Ph. D. Thesis, Panjab University, India.

[69] Qing Liang, Xiaodong Wu, Duan Weng, Zhenxiang Lu. 2008. Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. *Catal. Commun.* 9 (2008) 202-206.

[70] Liu, Y., Fu, Q., and Stephanopoulos, M. F. 2004. Preferential Oxidation of CO in H_2 over CuO/CeO_2 Catalysts. *Catal. Today* 93-95: 241-246.

[71] Prasad, R., and Rattan, G. 2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. *Bull. Chem. React. Eng. Catal.* 4(1): 5-9.

[72] Hu, Y., Dong, L., Shen, M., Liu, D., Wang, J., Ding, W., and Chen, Y. 2001. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. *Appl. Catal. B* 31: 61-69.

[73] Damyanova, S., Perez, C., Schmal, M., and Bueno, J. 2002. Characterization of ceria-coated alumina carrier. *Appl. Catal. A* 234: 271-282.