skip to main content

Optimization of Discharge Plasma Reactor for Dry Reforming of Methane using Response Surface Methodology

1Chemical Engineering Department, Chemical Engineering Department, University of Technology-Iraq, Baghdad, Iraq

2Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq

3Department of Chemical Engineering, University of Science and Technology, the University of Danang, 54 Nguyen Luong Bang st, Danang, 550000, Viet Nam

Received: 25 May 2023; Revised: 18 Jul 2023; Accepted: 19 Jul 2023; Available online: 27 Jul 2023; Published: 20 Aug 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This research provides a study of the dry reforming of methane (DRM), which converts two main greenhouses gases (CO2 and CH4) to synthesis gas (H2 and CO) by a Dielectric Barrier Discharge (DBD) plasma reactor at atmospheric pressure. The Box-Behnken Design (BBD) method based on the Response Surface Methodology (RSM) was applied to determine the optimum experimental conditions on the plasma stability and the synthesis gas production. The synergistic effects of input power (P), CO2/CH4 ratio (R), and flow rate (FR) on the CO2, CH4 conversions, H2, CO yields, and the syngas ratio of H2 to CO were studied. With the desirability value of 0.97, the optimum values of 10.05 W (P), 1.03 (R), and 1.58 L.min1 FR were identified with CO2 conversion of 48.56% and CH4 conversion of 86.67%; H2 and CO yields of 45.87% and 39.43% respectively; and syngas ratio of H2 to CO of 0.88. The study shows that both P and FR have a major significant effect on the reactant conversions and syngas ratio, followed by R. Meanwhile, the value of R has a significant impact on the H2, CO yields followed P and FR. In contrast, the synergistic effects between P-R, P-FR, and R-FR had a weak significant on the CO2 and CH4 conversions, H2 and CO yields, and H2 to CO ratio respectively. The quadratic term coefficients of P, R, and FR had a remarkable effect on all responses. Thus, the synergistic effect of the most important parameters improves the process efficiency. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Design of Experiments; Response Surface Methodology; CO2 reforming of methane optimization; Dielectric Barrier Discharge Plasma; Syngas production
Funding: University of Technology-Iraq, Baghdad, Iraq

Article Metrics:

  1. Mei, D., Zhang, P., Duan, G., Liu, S., Zhou, Y., Fang, Z., Tu, X. (2022). CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma. Journal of CO2 Utilization, 62, 102073. DOI: 10.1016/j.jcou.2022.102073
  2. Alawi, N.M., Sunarso, J., Pham, G.H., Barifcani, A., Nguyen, M.H., Liu, S. (2020). Comparative study on the performance of microwave-assisted plasma DRM in nitrogen and argon atmospheres at a low microwave power. Journal of Industrial and Engineering Chemistry, 85, 118-129. DOI: 10.1016/j.jiec.2020.01.032
  3. Aziznia, A., Bozorgzadeh, H.R., Seyed-Matin, N., Baghalha, M., Mohamadalizadeh, A. (2012). Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3. Journal of Natural Gas Chemistry, 21(4), 466-475. DOI: 10.1016/S1003-9953(11)60392-7
  4. Chun, S.M., Hong, Y.C., Choi, D.H. (2017). Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure. Journal of CO2 Utilization, 19, 221-229. DOI: 10.1016/j.jcou.2017.03.016
  5. Li, F., Ao, M., Pham, G.H., Jin, Y., Nguyen, M.H., Alawi, N.M., Liu, S. (2020). A novel UiO-66 encapsulated 12-silicotungstic acid catalyst for dimethyl ether synthesis from syngas. Catalysis Today, 355, 3-9. DOI: 10.1016/j.cattod.2019.07.057
  6. Jiang, T., Li, Y., Liu, C.J., Xu, G.H., Eliasson, B., Xue, B. (2002). Plasma methane conversion using dielectric-barrier discharges with zeolite A. Catalysis Today, 72(3-4), 229-235. DOI: 10.1016/S0920-5861(01)00497-7
  7. Moshrefi, M.M., Rashidi, F., Bozorgzadeh, H. R., Ehtemam Haghighi, M. (2013). Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chemistry and Plasma Processing, 33, 453-466. DOI: 10.1007/s11090-013-9434-z
  8. Ozkan, A., Dufour, T., Arnoult, G., De Keyzer, P., Bogaerts, A., Reniers, F. (2015). CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. Journal of CO2 utilization, 9, 74-81. DOI: 10.1016/j.jcou.2015.01.002
  9. Qi, C., Wei, D., Xumei, T., Hui, Y., Xiaoyan, D., Yongxiang, Y. (2006). CO2 reforming of CH4 by atmospheric pressure abnormal glow plasma. Plasma Science and Technology, 8(2), 181. DOI: 10.1088/1009-0630/8/2/12
  10. Shapoval, V., Marotta, E. (2015). Investigation on plasma‐driven methane dry reforming in a self‐triggered spark reactor. Plasma Processes and Polymers, 12(8), 808-816. DOI: 10.1002/ppap.201400177
  11. Tu, X., Whitehead, J.C. (2012). Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 125, 439-448. DOI: 10.1016/j.apcatb.2012.06.006
  12. Tu, X., Whitehead, J.C. (2014). Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International journal of hydrogen energy, 39(18), 9658-9669. DOI: 10.1016/j.ijhydene.2014.04.073
  13. Wang, Q., Yan, B.H., Jin, Y., Cheng, Y. (2009). Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 29, 217-228. DOI: 10.1007/s11090-009-9173-3
  14. Zhang, A.J., Zhu, A.M., Guo, J., Xu, Y., Shi, C. (2010). Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 156(3), 601-606. DOI: 10.1016/j.cej.2009.04.069
  15. Chen, G., Silva, T., Georgieva, V., Godfroid, T., Britun, N., Snyders, R., Delplancke-Ogletree, M.P. (2015). Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 40(9), 3789-3796. DOI: 10.1016/j.ijhydene.2015.01.084
  16. Zhou, L. M., Xue, B., Kogelschatz, U., Eliasson, B. (1998). Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy & Fuels, 12(6), 1191-1199. DOI: 10.1021/ef980044h
  17. Zhang, S., Gao, Y., Sun, H., Fan, Z., Shao, T. (2022). Dry reforming of methane by microsecond pulsed dielectric barrier discharge plasma: Optimizing the reactor structures. High Voltage, 7(4), 718-729. DOI: 10.1049/hve2.12201
  18. Zeng, Y., Zhu, X., Mei, D., Ashford, B., Tu, X. (2015). Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts. Catalysis Today, 256, 80-87. DOI: 10.1016/j.cattod.2015.02.007
  19. Al-Mohammedawi, H.H., Znad, H., Eroglu, E. (2018). Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. International Journal of Hydrogen Energy, 43(33), 15823-15834. DOI: 10.1016/j.ijhydene.2018.06.140
  20. Serrano-Lotina, A., Daza, L. (2014). Influence of the operating parameters over dry reforming of methane to syngas. International Journal of Hydrogen Energy, 39(8), 4089-4094. DOI: 10.1016/j.ijhydene.2013.05.135
  21. Xu, Y., Tian, Z., Xu, Z., Lin, L. (2002). Reactions in a Mixture of CH4 and CO2 under the Action of Microwave Discharge at Atmospheric Pressure. Journal of Natural Gas Chemistry, 11(1/2), 28-32
  22. Wu, A., Yan, J., Zhang, H., Zhang, M., Du, C., Li, X. (2014). Study of the dry methane reforming process using a rotating gliding arc reactor. International journal of hydrogen energy, 39(31), 17656-17670. DOI: 10.1016/j.ijhydene.2014.08.036
  23. Pakhare, D., Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43(22), 7813-7837. DOI: 10.1039/C3CS60395D
  24. Alawi, N.M., Nguyen, H.M. (2022). Discharge plasma reactor dry reforming of methane at high CO2/CH4 feed ratio. AIP Conference Proceedings, 2443(1), 030029. DOI: 10.1063/5.0092159
  25. Timmermans, E.A.H., Jonkers, J.I.A.J., Thomas, I.A.J., Rodero, A., Quintero, M.C., Sola, A., Gamero, B., Van Der Mullen, J.A.M. (1998). The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure. Spectrochimica Acta Part B: Atomic Spectroscopy, 53(11), 1553-1566. DOI: 10.1016/S0584-8547(98)00186-4
  26. Long, H., Shang, S., Tao, X., Yin, Y., Dai, X. (2008). CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. International Journal of Hydrogen Energy, 33(20), 5510-5515. DOI: 10.1016/j.ijhydene.2008.05.026
  27. Li, L., Jiang, X., Wang, H., Wang, J., Song, Z., Zhao, X., Ma, C. (2017). Methane dry and mixed reforming on the mixture of bio-char and nickel-based catalyst with microwave assistance. Journal of Analytical and Applied Pyrolysis, 125, 318-327. DOI: 10.1016/j.jaap.2017.03.009
  28. Pan, K.L., Chung, W.C., Chang, M.B. (2014). Dry reforming of CH4 with CO2 to generate syngas by combined plasma catalysis. IEEE Transactions on Plasma Science, 42(12), 3809-3818. DOI: 10.1109/TPS.2014.2360238
  29. Chung, W.C., Chang, M.B. (2016). Dry reforming of methane by combined spark discharge with a ferroelectric. Energy conversion and management, 124, 305-314. DOI: 10.1016/j.enconman.2016.07.023
  30. Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science & Business Media. DOI: 10.1007/978-3-662-22199-0

Last update:

No citation recorded.

Last update:

No citation recorded.