skip to main content

Study on Method of Doping Au Nanoparticles on ZnO Stratified Microstructure to Enhance Photocatalytic Ability and Antibacterial Activity

School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

Received: 1 Mar 2023; Revised: 7 Apr 2023; Accepted: 10 Apr 2023; Available online: 16 Apr 2023; Published: 30 Apr 2023.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, stratified microstructure gold/zinc oxide (Au/ZnO) composites were successfully prepared by the method of dispersing Au nanoparticles (Au NPs) on the surface of the hierarchical flower ZnO via HAuCl4 reduction in the presence of different reducing agents such as sodium citrate (SC), sodium borohydride (SB), sodium hydroxide and ethanol (SE), and Hg lamp 250W. Au-doped samples were named Au/ZnO-SC, Au/ZnO-SB, Au/ZnO-SE, and Au/ZnO-Hg lamp, respectively. Au/ZnO-SC and Au/ZnO-SB revealed the uniform distribution of Au nanoparticles on the ZnO substrate, meanwhile, Au nanoparticles were very densely distributed in Au/ZnO-SE and Au/ZnO-Hg lamp samples. The pure ZnO only showed an absorption peak in the ultraviolet (UV) region, Au/ZnO samples indicated additional absorption peaks in the visible light region (500-600 nm), which were characteristic of the surface plasmon resonance (SPR) effect of Au NPs in composites. Therefore, their bandgap energy was reduced compared to ZnO (3.202 eV), leading to increased photocatalytic efficiency under visible light irradiation. Among the doped samples, Au/ZnO-SC (with Au content as 5 wt%) had the largest surface area (26.23 m2/g) and the highest pore volume (0.263 cm3/g) and average pore width (33.2 nm). As a result, it showed the highest catalytic efficiency through complete degradation of tartrazine (TA) within 30 min with a reaction rate of 0.124 min1 under Hg lamp 250 irradiation. In addition, both pure ZnO and Au/ZnO nanocomposites exhibited high antimicrobial activity in killing Escherichia coli (E. coli), and their enhancing effect of them was reliant on the weight ratio of Au on ZnO and the concentration of tested samples. These results indicated that Au/ZnO material has prominent potential for applications in water environment treatment. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Stratified Microstructure; Au/ZnO; Photocatalyst;Tartrazine; Anbacterial Activity
Funding: Vietnam National Foundation for Science and Technology Development (NAFOSTED) under contract 104.05-2018.3; German Academic Exchange Service under contract DAAD No. 57315854; Federal Ministry for Economic Cooperation and Development (BMZ)

Article Metrics:

  1. Ngoc, K.H.P., Vu, A.-T. (2022). Simple Preparation of the CuO•Fe3O4/Silica Composite from Rice Husk for Enhancing Fenton-Like Catalytic Degradation of Tartrazine in a Wide pH Range. Adsorption Science & Technology, 2022, 6454354. DOI: 10.1155/2022/6454354
  2. Madihi-Bidgoli, S., Asadnezhad, S., Yaghoot-Nezhad, A., Hassani, A. (2021). Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application. Journal of Environmental Chemical Engineering, 9(6), 106660. DOI: 10.1016/j.jece.2021.106660
  3. Hassani, A., Eghbali, P., Mahdipour, F., Wacławek, S., Lin, K.-Y.A., Ghanbari, F. (2023). Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chemical Engineering Journal, 453, 139556. DOI: 10.1016/j.cej.2022.139556
  4. Karim, A.V., Hassani, A., Eghbali, P., Nidheesh, P.V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26(1), 100965. DOI: 10.1016/j.cossms.2021.100965
  5. Juneja, S., Madhavan, A., Ghosal, A., Moulick, R.G., Bhattacharya, J. (2017). Synthesis of Graphenized Au/ZnO Plasmonic Nanocomposites for Simultaneous Sunlight mediated Photo-catalysis and Anti-microbial Activity. Journal of Hazardous Materials, 347, 378-389. DOI: 10.1016/j.jhazmat.2017.12.034
  6. Vu, A.-T., Pham, T.A.T., Mac, V.H., Nguyen, T.H. (2021). Facile Controlling of the Physical Properties of Zinc Oxide and Its Application to Enhanced Photocatalysis. Journal of Analytical Methods in Chemistry, 2021, 5533734. DOI: 10.1155/2021/5533734
  7. Thi, T.A.N., Vu, A.-T. (2022). Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 403-419. DOI: 10.9767/bcrec.17.2.13931.403-419
  8. Pham, T.A.T., Tran, V.A., Le, V.D., Nguyen, M.V., Truong, D.D., Do, X.T., Vu, A.-T. (2020). Facile Preparation of ZnO Nanoparticles and Ag/ZnO Nanocomposite and Their Photocatalytic Activities under Visible Light. International Journal of Photoenergy, 2020, 8897667. DOI: 10.1155/2020/8897667
  9. Tu, V.A., Tuan, V.A. (2018). A facile and fast solution chemistry synthesis of porous ZnO nanoparticles for high efficiency photodegradation of tartrazine. Vietnam Journal of Chemistry 56(2), 214-219. DOI: 10.1002/vjch.201800016
  10. Nguyen, T.H., Vu, A.-T., Dang, V.H., Wu, J.C.-S., Le, M.T. (2020). Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite. Topics in Catalysis, 63, 1215–1226. DOI: 10.1007/s11244-020-01361-5
  11. Joshi, K.M., Shrivastava, V.S. (2011). Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Applied Nanoscience 1(3), 147-155. DOI: 10.1007/s13204-011-0023-2
  12. Shirzad-Siboni, M., Farrokhi, M., Soltani, R.D.C., Khataee, A., Tajassosi, S. (2014). Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Industrial & Engineering Chemistry Research, 53(3), 1079-1087. DOI: 10.1021/ie4032583
  13. Wang, Y., Zhang, L., Teng, B., Fan, M. (2015). High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 168-169, 1-8. DOI: 10.1016/j.apcatb.2014.12.017
  14. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112665. DOI: 10.1016/j.jphotochem.2020.112665
  15. Deng, Q., Duan, X., Ng, D.H.L., Tang, H., Yang, Y., Kong, M., Wu, Z., Cai, W., Wang, G. (2012). Ag Nanoparticle Decorated Nanoporous ZnO Microrods and Their Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 4(11), 6030-6037. DOI: 10.1021/am301682g
  16. Lee, J., Shim, H.S., Lee, M., Song, J.K., Lee, D. (2011). Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO–Au Nanoparticle Composites. The Journal of Physical Chemistry Letters, 2(22), 2840-2845. DOI: 10.1021/jz2013352
  17. Udawatte, N., Lee, M., Kim, J., Lee, D. (2011). Well-Defined Au/ZnO Nanoparticle Composites Exhibiting Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 3(11), 4531-4538. DOI: 10.1021/am201221x
  18. Jaramillo-Páez, C.A., Navío, J.A., Hidalgo, M.C., Macías, M. (2018). ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates. Catalysis Today, 313, 12-19. DOI: 10.1016/j.cattod.2017.12.009
  19. Mendoza-Mendoza, E., Nuñez-Briones, A.G., García-Cerda, L.A., Peralta-Rodríguez, R.D., Montes-Luna, A.J. (2018). One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceramics International, 44(6), 6176-6180. DOI: 10.1016/j.ceramint.2018.01.001
  20. Lam, S.-M., Quek, J.-A., Sin, J.-C. (2018). Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 353, 171-184. DOI: 10.1016/j.jphotochem.2017.11.021
  21. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S.-y., Lin, H., Wang, G. (2020). Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceramics International, 46(2), 1494-1502. DOI: 10.1016/j.ceramint.2019.09.116
  22. Wang, G., Zhang, L., Li, Y., Zhao, W., Kuang, A., Li, Y., Xia, L., Li, Y., Xiao, S. (2020). Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure. Journal of Physics D: Applied Physics, 53(1), 015104. DOI: 10.1088/1361-6463/ab440e
  23. Qi, K., Cheng, B., Yu, J., Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792-820. DOI: 10.1016/j.jallcom.2017.08.142
  24. Mohd Yusof, H., Mohamad, R., Zaidan, U.H., Abdul Rahman, N.A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology, 10(1), 57. DOI: 10.1186/s40104-019-0368-z
  25. Shim, K., Abdellatif, M., Choi, E., Kim, D. (2017). Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications. Applied Microbiology and Biotechnology, 101(7), 2801-2809. DOI: 10.1007/s00253-017-8099-6
  26. Janaki, A.C., Sailatha, E., Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22. DOI: 10.1016/j.saa.2015.02.041
  27. Kaushik, M., Niranjan, R., Thangam, R., Madhan, B., Pandiyarasan, V., Ramachandran, C., Oh, D.-H., Venkatasubbu, G.D. (2019). Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Applied Surface Science, 479, 1169-1177. DOI: 10.1016/j.apsusc.2019.02.189
  28. Ye, L., Cao, Z., Liu, X., Cui, Z., Li, Z., Liang, Y., Zhu, S., Wu, S. (2022). Noble metal-based nanomaterials as antibacterial agents. Journal of Alloys and Compounds, 904, 164091. DOI: 10.1016/j.jallcom.2022.164091
  29. Gholap, H.M., Warule, S., Sangshetti, J., Kulkarni, G., Banpurkar, A., Satpute, S., Patil, R. (2016). Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Applied Microbiology and Biotechnology, 100, 5849–5858. DOI: 10.1007/s00253-016-7391-1
  30. Majhi, R.K., Mohanty, S., Khan, M.I., Mishra, A., Brauner, A. (2021). Ag@ZnO Nanoparticles Induce Antimicrobial Peptides and Promote Migration and Antibacterial Activity of Keratinocytes. ACS Infectious Diseases, 7(8), 2068-2072. DOI: 10.1021/acsinfecdis.0c00903
  31. Vu, A.-T., Pham, T.A.T., Tran, T.T., Nguyen, X.T., Tran, T.Q., Tran, Q.T., Nguyen, T.N., Doan, T.V., Vi, T.D., Nguyen, C.L., Nguyen, M.V., Lee, C.-H. (2020). Synthesis of Nano-Flakes Ag•ZnO•Activated Carbon Composite from Rice Husk as A Photocatalyst under Solar Light. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 264-279. DOI: 10.9767/bcrec.15.1.5892.264-279
  32. Biswal, R., Yadav, P., Khan, B., Harish, H., Kumar, P., Singh, M.K. (2022). Synthesis and optical properties of citric acid (CA) doped ZnFe2O4 hybrid nanocomposite. Materials Today: Proceedings, 67, 145-150. DOI: 10.1016/j.matpr.2022.05.575
  33. Zhou, H., Zhang, H., Wang, Y., Miao, Y., Gu, L., Jiao, Z. (2015). Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties. Journal of Colloid and Interface Science, 448, 367-373. DOI: 10.1016/j.jcis.2015.02.040
  34. Qu, X., Yang, R., Tong, F., Zhao, Y., Wang, M.-H. (2018). Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technology, 330, 259-265. DOI: 10.1016/j.powtec.2018.02.019
  35. Lin, Y., Wei, W., Wang, Y., Zhou, J., Sun, D., Zhang, X., Ruan, S. (2015). Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures. Journal of Alloys and Compounds, 650, 37-44. DOI: 10.1016/j.jallcom.2015.07.242
  36. Hameed, A.S.H., Karthikeyan, C., Ahamed, A.P., Thajuddin, N., Alharbi, N.S., Alharbi, S.A., Ravi, G. (2016). In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Scientific Reports, 6(1), 24312. DOI: 10.1038/srep24312
  37. Ahmad, M., Rehman, W., Khan, M.M., Qureshi, M.T., Gul, A., Haq, S., Ullah, R., Rab, A., Menaa, F. (2021). Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 9(1), 104725. DOI: 10.1016/j.jece.2020.104725
  38. Lei, C., Pi, M., Jiang, C., Cheng, B., Yu, J. (2017). Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. Journal of Colloid and Interface Science, 490, 242-251. DOI: 10.1016/j.jcis.2016.11.049
  39. Gavade, N.L., Kadam, A.N., Babar, S.B., Gophane, A.D., Garadkar, K.M., Lee, S.-W. (2020). Biogenic synthesis of gold-anchored ZnO nanorods as photocatalyst for sunlight-induced degradation of dye effluent and its toxicity assessment. Ceramics International, 46(8, Part A), 11317-11327. DOI: 10.1016/j.ceramint.2020.01.161
  40. Babu, K.S., Reddy, A.R., Sujatha, C., Reddy, K.V., Mallika, A.N. (2013). Synthesis and optical characterization of porous ZnO. Journal of Advanced Ceramics, 2(3), 260-265. DOI: 10.1007/s40145-013-0069-6
  41. Bouzid, H., Faisal, M., Harraz, F.A., Al-Sayari, S.A., Ismail, A.A. (2015). Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity. Catalysis Today, 252, 20-26. DOI: 10.1016/j.cattod.2014.10.011
  42. Ismail, A.A., Harraz, F.A., Faisal, M., El-Toni, A.M., Al-Hajry, A., Al-Assiri, M.S. (2016). A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposites. Materials & Design, 109, 530-538. DOI: 10.1016/j.matdes.2016.07.107
  43. Zheng, X., Zhang, Z., Meng, S., Wang, Y., Li, D. (2020). Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chemical Engineering Journal, 393, 124676. DOI: 10.1016/j.cej.2020.124676
  44. Jin, Y., Jiao, S., Lu, H., Wang, D., Gao, S., Wang, J. (2020). Localized Surface Plasmon-Enhanced Ultraviolet and Visible Photoresponse Based on ZnO Films with Au Nanoparticles. Journal of Electronic Materials, 49(8), 4491-4497. DOI: 10.1007/s11664-020-08153-3
  45. Lu, J., Wang, H., Peng, D., Chen, T., Dong, S., Chang, Y. (2016). Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Physica E: Low-dimensional Systems and Nanostructures, 78, 41-48. DOI: 10.1016/j.physe.2015.11.035
  46. Yu, H., Ming, H.A.I., Gong, J., Li, H., Huang, H.U.I., Pan, K., Liu, Y., Kang, Z., Wei, J.I.E., Wang, D. (2013). Facile synthesis of Au/ZnO nanoparticles and their enhanced photocatalytic activity for hydroxylation of benzene. Bulletin of Materials Science, 36(3), 367-372. DOI: 10.1007/s12034-013-0491-y
  47. Daud, S.N.H., Haw, C.Y., Chiu, W.S., Aspanut, Z., Jani, N.A., Khiew, P.S., Lim, Y.C., Abd. Hamid, M.A., Ali, A.M. (2017). 3D hyperbranched heterostructures of Ag nanocrystals-decorated ZnO nanopillars: controlled growth and characterization of the optical properties. CrystEngComm, 19(37), 5591-5603. DOI: 10.1039/C7CE01159H
  48. Wu, G., Zhao, G., Sun, J., Cao, X., He, Y., Feng, J., Li, D. (2019). The effect of oxygen vacancies in ZnO at an Au/ZnO interface on its catalytic selective oxidation of glycerol. Journal of Catalysis, 377, 271-282. DOI: 10.1016/j.jcat.2019.06.030
  49. Liu, X., Liu, M.-H., Luo, Y.-C., Mou, C.-Y., Lin, S.D., Cheng, H., Chen, J.-M., Lee, J.-F., Lin, T.-S. (2012). Strong Metal–Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. Journal of the American Chemical Society, 134(24), 10251-10258. DOI: 10.1021/ja3033235
  50. Vu, A.-T., Pham, T.A.T., Do, X.T., Tran, V.A., Le, V.D., Truong, D.D., Nguyen, T.H., Nguyen, M.V. (2021). Preparation of Hierarchical Structure Au/ZnO Composite for Enhanced Photocatalytic Performance: Characterization, Effects of Reaction Parameters, and Oxidizing Agent Investigations. Adsorption Science & Technology, 2021, 5201497. DOI: 10.1155/2021/5201497
  51. Choudhary, M.K., Kataria, J., Sharma, S. (2018). Novel Green Biomimetic Approach for Preparation of Highly Stable Au-ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Applied Nano Materials, 1(4), 1870-1878. DOI: 10.1021/acsanm.8b00272
  52. Song, X., Liu, Y., Zheng, Y., Ding, K., Nie, S., Yang, P. (2016). Synthesis of butterfly-like ZnO nanostructures and study of their self-reducing ability toward Au3+ ions for enhanced photocatalytic efficiency. Physical Chemistry Chemical Physics, 18(6), 4577-4584. DOI: 10.1039/C5CP07187A
  53. He, W., Kim, H.-K., Wamer, W.G., Melka, D., Callahan, J.H., Yin, J.-J. (2014). Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au Hybrid Nanostructures with Enhanced Photocatalytic and Antibacterial Activity. Journal of the American Chemical Society, 136(2), 750-757. DOI: 10.1021/ja410800y
  54. Awad, A., Abou-Kandil, A.I., Elsabbagh, I., Elfass, M., Gaafar, M., Mwafy, E. (2015). Polymer nanocomposites part 1:Structural characterization of zinc oxide nanoparticles synthesized via novel calcination method. Journal of Thermoplastic Composite Materials, 28(9), 1343-1358. DOI: 10.1177/0892705714551241
  55. Seil, J.T., Webster, T.J. (2012). Antimicrobial applications of nanotechnology: methods and literature, International Journal of Nanomedicine, 7, 2767-2781. DOI: 10.2147/IJN.S24805
  56. Hitkari, G., Chowdhary, P., Kumar, V., Singh, S., Motghare, A. (2022). Potential of Copper-Zinc Oxide nanocomposite for photocatalytic degradation of congo red dye. Cleaner Chemical Engineering, 1, 100003. DOI: 10.1016/j.clce.2022.100003
  57. Bhushan, B., Jahan, K., Verma, V., Murty, B.S., Mondal, K. (2020). Photodegradation of methylene blue dye by powders of Ni–ZnO floweret consisting of petals of ZnO nanorod around Ni-rich core. Materials Chemistry and Physics, 253, 123394. DOI: 10.1016/j.matchemphys.2020.123394
  58. Bouarroudj, T., Aoudjit, L., Djahida, L., Zaidi, B., Ouraghi, M., Zioui, D., Mahidine, S., Shekhar, C., Bachari, K. (2021). Photodegradation of tartrazine dye favored by natural sunlight on pure and (Ce, Ag) co-doped ZnO catalysts. Water Science and Technology, 83(9), 2118-2134. DOI: 10.2166/wst.2021.106

Last update:

No citation recorded.

Last update:

No citation recorded.