skip to main content

Production of Butane from Methyl Ethyl Ketone over Pt/Al2O3

1Department of Chemical Engineering, The University of Technology, Baghdad, 10066, Iraq

2Department of Chemical, Paper, Biomedical Engineering, Miami University, 64 Engineering Building 650 E. High St, Oxford, OH 45056, United States

Received: 8 Dec 2022; Revised: 31 Dec 2022; Accepted: 2 Jan 2023; Available online: 13 Jan 2023; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methyl ethyl ketone (MEK) was catalytically converted to butane directly in one step over platinum (Pt) supported on alumina (Al2O3). The reaction was performed in the gas phase in a fixed bed reactor. Conversion of MEK to butane was achieved by hydrogenation of MEK to 2-butanol, dehydration of 2-butanol to butene, and further hydrogenation of butene to butane. The results showed that butane can be produced with selectivity reaching 95% depending on the operating conditions. The highest selectivity for butane was obtained at 220 °C and a H2/MEK molar ratio of 15. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Hydrodeoxygenation; methyl ethyl ketone; butane; Pt/Al2O3

Article Metrics:

  1. Ji, X.J., Huang, H., Ouyang, P.K. (2011). Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29(3), 351–364. DOI: 10.1016/j.biotechadv.2011.01.007
  2. Multer, A., McGraw, N., Hohn, K., Vadlani, P. (2012). Production of methyl ethyl ketone from biomass using a hybrid biochemical/catalytic approach. Industrial & Engineering Chemistry Research, 52(1), 56–60. DOI: 10.1021/ie3007598
  3. Yu, E.K., Saddler, J.N. (1983). Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Applied and Environmental Microbiology, 46(3), 630–635. DOI: 10.1128/aem.46.3.630-635.1983
  4. Mas, C.D., Jansen, N.B., Tsao, G.T. (1988). Production of optically active 2, 3‐butanediol by Bacillus polymyxa. Biotechnology and bioengineering, 31(4), 366–377. DOI: 10.1002/bit.260310413
  5. Zeng, A.-P., Biebl, H., Deckwer, W.-D. (1990). Effect of pH and acetic acid on growth and 2, 3-butanediol production of Enterobacter aerogenes in continuous culture. Applied Microbiology and Biotechnology, 33(5), 485–489. DOI: 10.1007/BF00172538
  6. Al-Auda, Z., Al-Atabi, H., Li, X., Zheng, Q., Hohn, K.L. (2019). Conversion of methyl ethyl ketone to butenes over bifunctional catalysts. Applied Catalysis A: General, 570, 173–182. DOI: 10.1016/j.apcata.2018.09.027
  7. Zheng, Q., Wales, M.D., Heidlage, M.G., Rezac, M., Wang, H., Bossmann, S.H., Hohn, K.L. (2015). Conversion of 2, 3-butanediol to butenes over bifunctional catalysts in a single reactor. Journal of Catalysis, 330, 222–237. DOI: 10.1016/j.jcat.2015.07.004
  8. Sacia, E.R., Balakrishnan, M., Deaner, M.H., Goulas, K.A., Toste, F.D., Bell, A.T. (2015). Back Cover: Highly Selective Condensation of Biomass-Derived Methyl Ketones as a Source of Aviation Fuel. ChemSusChem, 8(10), 1820. DOI: 10.1002/cssc.201500002
  9. Al-Auda, Z., Al-Atabi, H., Hohn, K. (2018). Metals on ZrO2: Catalysts for the Aldol Condensation of Methyl Ethyl Ketone (MEK) to C8 Ketones. Catalysts, 8(12), 622. DOI: 10.3390/catal8120622
  10. Kelly, G.J. (2004). Aldol Condensation Reaction and Catalyst Therefor. US Patent, US 6,706,928 B2
  11. Al-Auda, Z., Al-Atabi, H., Li, X., Thapa, P., Hohn, K. (2019). Conversion of 5-Methyl-3-Heptanone to C8 Alkenes and Alkane over Bifunctional Catalysts. Catalysts, 9(10), 845. DOI: 10.3390/catal9100845
  12. Ledoux, M.J., Crouzet, C., Pham-Huu, C., Turines, V., Kourtakis, K., Mills, P.L., Lerou, J.J. (2001). High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials: β-SiC, Si3N4, and BN. Journal of Catalysis, 203(2), 495–508. DOI: 10.1006/jcat.2001.3344
  13. Felthouse, T.R., Burnett, J.C., Horrell, B., Mummey, M.J., Kuo, Y. (2000). Maleic anhydride, maleic acid, and fumaric acid. In: Kirk-Othmer Encyclopedia of Chemical Technology. DOI: 10.1002/0471238961.1301120506051220.a01.pub2
  14. Surla, K., Vleeming, H., Guillaume, D., Galtier, P. (2004). A single events kinetic model: n-butane isomerization. Chemical Engineering Science, 59(22–23), 4773–4779. DOI: 10.1016/j.ces.2004.07.036
  15. Eastman, A.D., Mears, D. (2000). Hydrocarbons, C1–C6. In: Kirk-Othmer Encyclopedia of Chemical Technology. DOI: 10.1002/0471238961.030305011920.a01
  16. Duan, H., Dong, J., Gu, X., Peng, Y.-K., Chen, W., Issariyakul, T., Myers, W.K., Li, M.J., Yi, N., Kilpatrick, A.F.R., Wang, Y., Zheng, Z., Ji, S., Wang, Q., Feng, J., Chen, D., Li, Y., Buffet, J.C., Liu, H., Tsang, S.C.E., O’Hare, D. (2017). Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 8(1), 591. DOI: 10.1038/s41467-017-00596-3
  17. Granados Focil, A.A., Granados Fócil, S., Conde Sotelo, V.M., Grimm, R.L., González García, F., Rojas Santiago, E., Santolalla Vargas, C.E., Vera Ramirez, M.A., de los Reyes Heredia, J.A. (2019). Development of Bifunctional Hydrodeoxygenation Catalyst Rh‐HY for the Generation of Biomass‐Derived High‐Energy‐Density Fuels. Energy Technology, 7(6), 1801112. DOI: 10.1002/ente.201801112
  18. Strohmann, M., Bordet, A., Vorholt, A.J., Leitner, W. (2019). Tailor-made biofuel 2-butyltetrahydrofuran from the continuous flow hydrogenation and deoxygenation of furfuralacetone. Green Chemistry, 21(23), 6299–6306. DOI: 10.1039/C9GC02555C
  19. Lin, L., Yao, S., Gao, R., Liang, X., Yu, Q., Deng, Y., Liu, J., Peng, M., Jiang, Z., Li, S. (2019). A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nature Nanotechnology, 14(4), 354–361. DOI: 10.1038/s41565-019-0366-5
  20. Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., Kitagawa, Y., Kaneda, K. (2017). Mild Hydrogenation of Amides to Amines over a Platinum‐Vanadium Bimetallic Catalyst. Angewandte Chemie, 129(32), 9509–9513. DOI: 10.1002/ange.201704199
  21. Bordet, A., Lacroix, L., Fazzini, P., Carrey, J., Soulantica, K., Chaudret, B. (2016). Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. Angewandte Chemie, 128(51), 16126–16130. DOI: 10.1002/ange.201609477
  22. Qi, S.-C., Zhang, L., Einaga, H., Kudo, S., Norinaga, K., Hayashi, J. (2017). Nano-sized nickel catalyst for deep hydrogenation of lignin monomers and first-principles insight into the catalyst preparation. Journal of Materials Chemistry A, 5(8), 3948–3965. DOI: 10.1039/C6TA08538E
  23. Popov, Y.V, Mokhov, V.M., Nebykov, D.N., Latyshova, S.E., Shcherbakova, K.V., Panov, A.O. (2018). Hydrogenation of Dicyclopentadiene in the Presence of a Nickel Catalyst Supported onto a Cation Exchanger in a Flow-Type Reactor. Kinetics and Catalysis, 59(4), 444–449. DOI: 10.1134/S0023158418040109
  24. Sitthisa, S., Sooknoi, T., Ma, Y., Balbuena, P.B., Resasco, D.E. (2011). Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. Journal of Catalysis, 277(1), 1–13. DOI: 10.1016/j.jcat.2010.10.005
  25. Ye, R.P., Lin, L., Li, Q., Zhou, Z., Wang, T., Russell, C.K., Adidharma, H., Xu, Z., Yao, Y.G., Fan, M. (2018). Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science & Technology, 8(14), 3428–3449. DOI: 10.1039/C8CY00608C
  26. Waters, G., Richter, O., Kraushaar-Czarnetzki, B. (2006). Gas-phase conversion of acetone to methyl isobutyl ketone over bifunctional metal/carbon catalysts. 2. Examination of the hydrogenation potential of different metals. Industrial & Engineering Chemistry Research, 45(18), 6111–6117. DOI: 10.1021/ie0601854
  27. Bhanushali, J.T., Kainthla, I., Keri, R.S., Nagaraja, B.M. (2016). Catalytic hydrogenation of benzaldehyde for selective synthesis of benzyl alcohol: a review. Chemistry Select, 1(13), 3839–3853. DOI: 10.1002/slct.201600712
  28. Szöllősi, G., Mastalir, A., Molnar, A., Bartok, M. (1996). Hydrogenation of α, β-unsaturated ketones on metal catalysts. Reaction Kinetics and Catalysis Letters, 57(1), 29–36. DOI: 10.1007/BF02076116
  29. Corma, A., Huber, G.W., Sauvanaud, L., O’Connor, P. (2008). Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. Journal of Catalysis, 257(1), 163–171. DOI: 10.1016/j.jcat.2008.04.016
  30. Dapsens, P.Y., Mondelli, C., Pérez-Ramírez, J. (2012). Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catalysis, 2(7), 1487–1499. DOI: 10.1021/cs300124m
  31. Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A. (2005). Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 308(5727), 1446–1450. DOI: 10.1126/science.1111166
  32. Rekoske, J.E., Barteau, M.A. (1997). Kinetics and selectivity of 2-propanol conversion on oxidized anatase TiO2. Journal of Catalysis, 165(1), 57–72. DOI: 10.1006/jcat.1997.1467
  33. Bahruji, H., Bowker, M., Brookes, C., Davies, P.R., Wawata, I. (2013). The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Applied Catalysis A: General, 454, 66–73. DOI: 10.1016/j.apcata.2013.01.005
  34. Auroux, A., Artizzu, P., Ferino, I., Solinas, V., Leofanti, G., Padovan, M., Messina, G., Mansani, R. (1995). Dehydration of 4-methylpentan-2-ol over zirconia catalysts. Journal of the Chemical Society, Faraday Transactions, 91(18), 3263–3267. DOI: 10.1039/FT9959103263
  35. Chizallet, C., Digne, M., Arrouvel, C., Raybaud, P., Delbecq, F., Costentin, G., Che, M., Sautet, P., Toulhoat, H. (2009). Insights into the geometry, stability and vibrational properties of OH groups on g-Al2O3, TiO2-anatase and MgO from DFT calculations. Topics in Catalysis, 52(8), 1005–1016. DOI: 10.1007/s11244-009-9262-9
  36. Kostestkyy, P., Yu, J., Gorte, R.J., Mpourmpakis, G. (2014). Structure–activity relationships on metal-oxides: alcohol dehydration. Catalysis Science & Technology, 4(11), 3861–3869. DOI: 10.1039/C4CY00632A
  37. Pham, T.T., Lobban, L.L., Resasco, D.E., Mallinson, R.G. (2009). Hydrogenation and Hydrodeoxygenation of 2-methyl-2-pentenal on supported metal catalysts. Journal of Catalysis, 266(1), 9–14. DOI: 10.1016/j.jcat.2009.05.009
  38. González, C., Marín, P., Díez, F. V, Ordóñez, S. (2015). Hydrodeoxygenation of acetophenone over supported precious metal catalysts at mild conditions: Process optimization and reaction kinetics. Energy & Fuels, 29(12), 8208–8215. DOI: 10.1021/acs.energyfuels.5b02112
  39. Peng, B., Zhao, C., Mejía-Centeno, I., Fuentes, G.A., Jentys, A., Lercher, J.A. (2012). Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3. Catalysis Today, 183(1), 3–9. DOI: 10.1016/j.cattod.2011.10.022
  40. Itagaki, S., Matsuhashi, N., Taniguchi, K., Yamaguchi, K., Mizuno, N. (2014). Efficient Hydrodeoxygenation of Ketones, Phenols, and Ethers Promoted by Platinum–Heteropolyacid Bifunctional Catalysts. Chemistry Letters, 43(7), 1086–1088. DOI: 10.1246/cl.140342
  41. Al-Auda, Z., Li, X., Hohn, K.L. (2022). Dehydrogenation of 2, 3-Butanediol to Acetoin Using Copper Catalysts. Industrial & Engineering Chemistry Research, 61(10), 3530–3538. DOI: 10.1021/acs.iecr.1c04181
  42. Alotaibi, M.A., Kozhevnikova, E.F., Kozhevnikov, I.V. (2012). Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst. Chemical Communications, 48(57), 7194–7196. DOI: 10.1039/C2CC33189F

Last update:

No citation recorded.

Last update:

No citation recorded.