skip to main content

Cobalt Iron-Metal Organic Framework Coordinated to CMC Aerogel by Solvothermal Method and Application to Tetracycline Antibiotics Adsorption

1Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam

2Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

3Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam

4 Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Viet Nam

5 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam

View all affiliations
Received: 27 Oct 2022; Revised: 20 Dec 2022; Accepted: 24 Dec 2022; Available online: 25 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In order to minimize the adverse impacts on the aquatic environment after treatment process, several attempts have been made to develop biodegradable, easy-to-recover, and environmentally friendly materials. The metal-organic framework material (CoFe-MOF) was developed in the CMC aerogel matrix by solvothermal method and applied in tetracycline antibiotic (TCC) adsorption. The morphological and structural properties of the materials were analyzed by scanning electron microscope (SEM), x-ray diffraction (XRD), Fourier Transform Infra Red (FT-IR), and  (Brunauer-Emmett-Teller)  (BET) to identify the crystals formed relative to the pristine MOF. The effects of various factors of the adsorption process such as time, pH, amount of adsorbent, and initial concentration of antibiotics were investigated. Results have shown that the adsorption capacity was 188.7 mg.g-1 at pH 4, the initial TCC concentration of 80 g.L-1 and equilibration time of 120 min. The experimental data describing the antibiotic adsorption process follows the Pseudo-second-order kinetic model and the Langmuir isothermal model. The CoFe-MOF aerogel material can recover and reuse all four cycles, thus it can be considered as a promising material for environmental remediation and other applications. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Aerogel; MOFs; Adsorption; Antibiotics; Slovothermal
Funding: Foundation for Science and Technology Development Nguyen Tat Thanh University under contract No. 2022.01.69/HĐ-KHCN

Article Metrics:

  1. Parolo, M. E., Savini, M. C., Vallés, J. M., Baschini, M. T., & Avena, M. J. (2008). Tetracycline adsorption on montmorillonite: PH and ionic strength effects. Applied Clay Science, 40(1–4), 179–186. doi: 10.1016/j.clay.2007.08.003
  2. Chen, Y., Wang, F., Duan, L., Yang, H., & Gao, J. (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222, 487–494. doi: 10.1016/j.molliq.2016.07.090
  3. Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3), 209–227. doi: 10.1007/s10311-013-0404-8
  4. Dutta, J., & Mala, A. A. (2020). Removal of antibiotic from the water environment by the adsorption technologies: A review. Water Science and Technology, wst2020335. doi: 10.2166/wst.2020.335
  5. Ocampo-Pérez, R., Rivera-Utrilla, J., Gómez-Pacheco, C., Sánchez-Polo, M., & López-Peñalver, J. J. (2012). Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal, 213, 88–96. doi: 10.1016/j.cej.2012.09.072
  6. Wang, Z., Wu, C., Zhang, Z., Chen, Y., Deng, W., & Chen, W. (2021). Bimetallic Fe/Co-MOFs for tetracycline elimination. Journal of Materials Science, 56(28), 15684–15697. doi: 10.1007/s10853-021-06280-8
  7. Xie, S., Li, F., Xu, S., Li, J., & Zeng, W. (2019). Cobalt/iron bimetal-organic frameworks as efficient electrocatalysts for the oxygen evolution reaction. Chinese Journal of Catalysis, 40(8), 1205–1211. doi: 10.1016/S1872-2067(19)63384-X
  8. Guan, H., Wang, N., Feng, X., Bian, S., Li, W., & Chen, Y. (2021). FeMn bimetallic MOF directly applicable as an efficient electrocatalyst for overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126596. doi: 10.1016/j.colsurfa.2021.126596
  9. Wu, Y., Liu, Z., Bakhtari, M. F., & Luo, J. (2021). Preparation of GO/MIL-101(Fe,Cu) composite and its adsorption mechanisms for phosphate in aqueous solution. Environmental Science and Pollution Research, 28(37), 51391–51403. doi: 10.1007/s11356-021-14206-9
  10. Yang, W., Han, Y., Li, C., Zhu, L., Shi, L., Tang, W., Wang, J., Yue, T., & Li, Z. (2019). Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal. Chemical Engineering Journal, 375, 122076. doi: 10.1016/j.cej.2019.122076
  11. Ramasubbu, V., Alwin, S., Mothi, E. M., & Sahaya Shajan, X. (2017). TiO 2 aerogel–Cu-BTC metal-organic framework composites for enhanced photon absorption. Materials Letters, 197, 236–240. doi: 10.1016/j.matlet.2017.03.132
  12. Liu, H., Chen, J., Yuan, W., Jiang, C., Li, H., Li, J., Li, Y., Zhang, B., & Chen, Z. (2021). Structure engineering of Fe-based MOF aerogel by Halloysite Nanotubes for efficient methylene blue adsorption. Journal of Sol-Gel Science and Technology, 99(1), 55–62. doi: 10.1007/s10971-021-05540-y
  13. Franco, P., Cardea, S., Tabernero, A., & De Marco, I. (2021). Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules, 26(15), 4440. doi: 10.3390/molecules26154440
  14. Simón-Herrero, C., Caminero-Huertas, S., Romero, A., Valverde, J. L., & Sánchez-Silva, L. (2016). Effects of freeze-drying conditions on aerogel properties. Journal of Materials Science, 51(19), 8977–8985. doi: 10.1007/s10853-016-0148-5
  15. Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44(22), 3358–3393. doi: 10.1002/anie.200460587
  16. Maleki, H. (2016). Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal, 300, 98–118. doi: 10.1016/j.cej.2016.04.098
  17. Montes, S., & Maleki, H. (2020). Aerogels and their applications. In Colloidal Metal Oxide Nanoparticles (pp. 337–399). Elsevier. doi: 10.1016/B978-0-12-813357-6.00015-2
  18. Zhu, H., Yang, X., Cranston, E. D., & Zhu, S. (2016). Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal-Organic-Framework Particles for Separations Applications. Advanced Materials, 28(35), 7652–7657. doi: 10.1002/adma.201601351
  19. Tran, T. K. N., Phan, C. P. K., Ngo, T. C. Q., Hoang, N. B., Truong, L. D., & Nguyen, T. K. O. (2022). Synthesis and Characterization Bimetallic Organic Framework CoxFex(BDC) and Adsorption Cationic and Anionic Dyes. Processes, 10(7), 1352. doi: 10.3390/pr10071352
  20. Huang, C., Cai, B., Zhang, L., Zhang, C., & Pan, H. (2021). Preparation of iron-based metal-organic framework @cellulose aerogel by in situ growth method and its application to dye adsorption. Journal of Solid State Chemistry, 297, 122030. doi: 10.1016/j.jssc.2021.122030
  21. Cheng, P., Kim, M., Lim, H., Lin, J., Torad, N. L., Zhang, X., Hossain, Md. S. A., Wu, C., Wang, C., Na, J., & Yamauchi, Y. (2020). A General Approach to Shaped MOF‐Containing Aerogels toward Practical Water Treatment Application. Advanced Sustainable Systems, 4(8), 2000060. doi: 10.1002/adsu.202000060
  22. Abo El-Yazeed, W. S., Abou El-Reash, Y. G., Elatwy, L. A., & Ahmed, A. I. (2020). Novel bimetallic Ag-Fe MOF for exceptional Cd and Cu removal and 3,4-dihydropyrimidinone synthesis. Journal of the Taiwan Institute of Chemical Engineers, 114, 199–210. doi: 10.1016/j.jtice.2020.09.028
  23. Kong, Y., Zhuang, Y., Han, K., & Shi, B. (2020). Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 588, 124360. doi: 10.1016/j.colsurfa.2019.124360
  24. Mirsoleimani-azizi, S. M., Setoodeh, P., Zeinali, S., & Rahimpour, M. R. (2018). Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 6(5), 6118–6130. doi: 10.1016/j.jece.2018.09.017
  25. Zhuang, Y., Yu, F., Ma, J., & Chen, J. (2016). Facile synthesis of three-dimensional graphene–soy protein aerogel composites for tetracycline adsorption. Desalination and Water Treatment, 57(20), 9510–9519. doi: 10.1080/19443994.2015.1029530

Last update:

No citation recorded.

Last update:

No citation recorded.