Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, University Ahmed Benbella, BP 1524.El M’nouar. 31000 Oran, Algeria
BibTex Citation Data :
@article{BCREC1308, author = {Abdelkader Rahmouni and Mohammed Belbachir and Molkheir Ayat}, title = {Structural Investigation: Anionic Polymerization of Acrylamide under Microwave Irradiation using Maghnite-Na+ Clay (Algerien MMT) as Initiator}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {13}, number = {2}, year = {2018}, keywords = {green catalysis; Anionic polyacrylamide; hydrogel; Maghnite-H+; Microwave irradiation}, abstract = { Intercalation of acrylamide into interlayer spaces of natural montmorillonite called maghnite (Algerian MMT) by the free solvent polymerization technique under micowave irradiation was studied. The transformation was carried out with using both the raw (Maghnite-Na fin) and treated clay (Maghnite-Na + fin) in aqueous sodium hydroxide NaOH solution (1 M). It was shown that no initial modification of the layered mineral (by ion-exchange with Na + cations or organophilization) is needed for the successful introduction of anionic hydrogels into the interlayer gallery. The goal of the present study was to synthesis anionic polyacrylamide/Maghnite composite with similar composition and structure to that synthesized of other catalyst. The Maghnite catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. The anionic sodium-clay polyacrylamide material exhibited a tendency to the formation of exfoliated structure. The synthesized hydrogels, as monitored by the swelling behavior, were characterized by Fourier transform infrared and 1 HNMR analysis. }, issn = {1978-2993}, pages = {262--274} doi = {10.9767/bcrec.13.2.1308.262-274}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/1308} }
Refworks Citation Data :
Intercalation of acrylamide into interlayer spaces of natural montmorillonite called maghnite (Algerian MMT) by the free solvent polymerization technique under micowave irradiation was studied. The transformation was carried out with using both the raw (Maghnite-Na fin) and treated clay (Maghnite-Na+ fin) in aqueous sodium hydroxide NaOH solution (1 M). It was shown that no initial modification of the layered mineral (by ion-exchange with Na+ cations or organophilization) is needed for the successful introduction of anionic hydrogels into the interlayer gallery. The goal of the present study was to synthesis anionic polyacrylamide/Maghnite composite with similar composition and structure to that synthesized of other catalyst. The Maghnite catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. The anionic sodium-clay polyacrylamide material exhibited a tendency to the formation of exfoliated structure. The synthesized hydrogels, as monitored by the swelling behavior, were characterized by Fourier transform infrared and 1HNMR analysis.
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)