1Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221 005, India
2Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221 005, India
BibTex Citation Data :
@article{BCREC895, author = {Deepak Yadav and Ashish Kavaiya and Devendra Mohan and Ram Prasad}, title = {Low Temperature Selective Catalytic Reduction (SCR) of NOx Emissions by Mn-doped Cu/Al2O3 Catalysts}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {12}, number = {3}, year = {2017}, keywords = {Mn-doped Cu/Al2O3; Selective Catalytic Reduction; SCR; NOx; H2-LPG; de-NOx}, abstract = { The 15 mol% Cu/Al 2 O 3 catalysts with different Mn doping (0.5, 1.0, 1.5, mol%) were prepared using PEG-300 surfactant following evaporation-induced self-assembly (EISA) method. Calcination of precursors were performed in flowing air conditions at 500 ºC. The catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope Energy Dispersive X-Ray (SEM-EDX), Fourier Transform Infra Red (FTIR), and N 2 physisorption. The catalysts activities were evaluated for H 2 assisted LPG-SCR of NO in a packed bed tubular flow reactor with 200 mg catalyst under the following conditions: 500 ppm NO, 8 % O 2 , 1000 ppm LPG, 1 % H 2 in Ar with total flow rate of 100 mL/min. Characterization of the catalysts revealed that surface area of 45.6-50.3 m 2 /g, narrow pore size distribution (1-2 nm), nano-size crystallites, Cu 2+ and Mn 2+ phases were principal active components. Hydrogen enhanced significantly selective reduction of NO to N 2 with LPG over 1.0 mol % Mn-Cu/Al 2 O 3 giving 95.56 % NO reduction at 150 ºC. It was proposed that the synergistic interaction between H 2 and LPG substantially widened the NO reduction temperature window and a considerable increase in both activity and selectivity. Negligible loss of catalyst activity was observed for the 50 h of stream on run experiment at 150 ºC. The narrow pore size distribution, thermal stability of the catalyst and optimum Mn doping ensures good dispersion of Cu and Mn over Al 2 O 3 that improved NO reduction in H 2 -LPG SCR system. }, issn = {1978-2993}, pages = {415--429} doi = {10.9767/bcrec.12.3.895.415-429}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/895} }
Refworks Citation Data :
The 15 mol% Cu/Al2O3 catalysts with different Mn doping (0.5, 1.0, 1.5, mol%) were prepared using PEG-300 surfactant following evaporation-induced self-assembly (EISA) method. Calcination of precursors were performed in flowing air conditions at 500 ºC. The catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope Energy Dispersive X-Ray (SEM-EDX), Fourier Transform Infra Red (FTIR), and N2 physisorption. The catalysts activities were evaluated for H2 assisted LPG-SCR of NO in a packed bed tubular flow reactor with 200 mg catalyst under the following conditions: 500 ppm NO, 8 % O2, 1000 ppm LPG, 1 % H2 in Ar with total flow rate of 100 mL/min. Characterization of the catalysts revealed that surface area of 45.6-50.3 m2/g, narrow pore size distribution (1-2 nm), nano-size crystallites, Cu2+ and Mn2+ phases were principal active components. Hydrogen enhanced significantly selective reduction of NO to N2 with LPG over 1.0 mol % Mn-Cu/Al2O3 giving 95.56 % NO reduction at 150 ºC. It was proposed that the synergistic interaction between H2 and LPG substantially widened the NO reduction temperature window and a considerable increase in both activity and selectivity. Negligible loss of catalyst activity was observed for the 50 h of stream on run experiment at 150 ºC. The narrow pore size distribution, thermal stability of the catalyst and optimum Mn doping ensures good dispersion of Cu and Mn over Al2O3 that improved NO reduction in H2-LPG SCR system.
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)