skip to main content

Kinetic Study of the Catalytic Pyrolysis of Oil-Containing Waste

Department of Biotechnology and Chemistry, Tver State Technical University, Afanasiy Nikitin str., 22, Tver 170026, Russian Federation

Received: 29 Jun 2016; Published: 11 Oct 2016.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2016 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Basing on the experimental data the optimal parameters of the pyrolysis of heavy and residual hydrocarbons of oil were defined as follows: temperature of 500 °С; catalyst  of CoCl2 with the catalyst loading 5% (wt.) of the substrate weight. Under the optimal conditions the kinetic investigation of the pyrolysis process was carried out using the thermogravimetric method. According to the investigation, it was found that the activation energy of the catalytic pyrolysis of oil-containing waste decreased by 20-30 kJ/mol in comparison to non-catalytic process. 

Keywords: thermocatalytic processing; pyrolysis; heavy and residual hydrocarbons; metals chlorides; kinetic

Article Metrics:

  1. Wang, Z., Guo, Q., Liu, X., Cao, C. (2007). Low Temperature Pyrolysis Characteristics of Oil Sludge under Various Heating Conditions. Energy Fuels, 21: 957-962
  2. Kurochkin, A.K., Tamm, T. (2010). Oil slime – resource raw materials for production of light motor fuels and road bitumens. Sphere petrogas, 4: 72-81
  3. Kuriakose, A.P., Manjooran, S.K.B. (1994). Utilization of refinery sludge for lighter oils and industrial bitumen. Energy Fuels, 8: 788-792
  4. Shie, J.-L., Lin, J.-P., Chang, C.-Y., Lee, D.-J., Wud, C.-H. (2003). Pyrolysis of oil sludge with additives of sodium and potassium compounds. Resour. Conserv. Recycl., 39: 51-64
  5. Bokovikova, T. N., Shperber, E. R., Shperber, D. R. (2011). Elaboration of application methods for trice oil emulsions and oil-slimes. NAFTA. 62 (7-8): 253-256
  6. Shie, J.-L., Chang, C.-Y., Lin, J.-P., Lee, D.-J., Wu, C.-H. (2002) Use of Inexpensive Additives in Pyrolysis of Oil Sludge. Energy Fuels. 16: 102-108
  7. Rasul, M.G., Jahirul, M.I. (2012) Recent Developments in Biomass Pyrolysis for Bio-Fuel Production: Its Potential for Commercial Applications. Recent Researches in Environmental and Geological Sciences. 256-265
  8. Bokovikova, T.N., Shperber, D.R., Shperber, E.R. (2011). Application of oil-slimes in road base and surface construction. NAFTA. 62 (11-12): 383-385
  9. Shie, J.-L., Chang, C.-Y., Lin, J.-P., Wu, C.-H., Lee, D.-J. (2000). Resources recovery of oil sludge by pyrolysis: kinetics study. J. Chem. Technol. Biotechnol. 75: 443-450
  10. Karayildirim, T., Yanik, J., Yuksel, M., Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel. 85: 1498-1508
  11. Shie, J.-L., Chang, Ch.-Y., Lin, J.-P., Wu, Ch.-H., Lee, D.-J. (2000). Resources recovery of oil sludge by pyrolysis: kinetics study. J. Chem. Technol. Biotechnol. 75: 443-450
  12. Fonts, I., Kuoppala, E., Oasmaa, A. (2009). Physicochemical Properties of Product Liquid from Pyrolysis of Sewage Sludge. Energy Fuels. 23: 4121-4128
  13. Karayildirim, T., Yanik, J., Yuksel, M., Bockhorn, H. (2006). Characterisation of products from pyrolysis of waste sludges. Fuel. 85: 1498-1508
  14. Rulkens, W. (2008). Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options. Energy Fuels. 22(1): 9-15
  15. Kaminsky, W., Zorriqueta, I.-J. N. (2007). Catalytical and thermal pyrolysis of polyolefins. J. of Anal. Appl. Pyrol. 79(1-2): 368-374
  16. Sulman, M., Kosivtsov, Yu., Sulman, E., Alfyorov, V., Lugovoy, Yu., Molchanov, V., Tyamina, I., Misnikov, O., Afanasjev, A., Kumar, N., Murzin, D. (2009). Influence of aluminosilicate materials on the peat low-temperature pyrolysis and gas formation. Chem. Eng. J. 154: 355-360
  17. Zou, X., Yao, J., Yang, X., Song, W., Lin, W. (2007). Catalytic Effects of Metal Chlorides on the Pyrolysis of Lignite. Energy Fuels. 21: 619-624
  18. Blasi, C.D., Branca, C., Galgano, A. (2008). Products and Global Weight Loss Rates of Wood Decomposition Catalyzed by Zinc Chloride. Energy Fuels. 22(1): 663-670
  19. Junwon, J., Jinhwan, K., Jin-Young B. (2005). Effects of Lewis acid-type transition metal chloride additives on the thermal degradation of ABS. Polym. Degrad. Stab. 88(2): 324-332
  20. Shilina M.I., Bakharev R.V., Smirnov V.V. (2008). Aluminum halide-cobalt halide polynuclear complexes active in low-temperature conversion of alkanes: formation, molecular structures, and IR spectra. Russ. Chem. Bull. 57(11): 2251-2260
  21. Kaisersberger, E., Opfermann, J. (1991). Kinetic evaluation of exothermal reactions measured by DSC. Thermochimica Acta. 187: 151-158
  22. Brown, M.E., Maciejewski, M., Vyazovkin S. (2000). Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, method and results. Thermochimica Acta. 355(1-2): 125-143
  23. Fillips, P.De, Caprarils, B.De, Scarella, M., Verdone, N. (2014). Double Distribution Activation Energy Model for microalgae pyrolysis. Recent Advances in Energy, Environment and Financial Planning. 68-73
  24. Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics. 11(2): 431-441
  25. Minsker, K.S., Ivanova, S.R., Biglova, R.Z. (1995). Complexes of metal chlorides with proton donors - promising polyfunctional catalysts for electrophilic processes. Russ. Chem. Rev. 64(5): 429-444
  26. Elam, S.K., Tokura, I., Saito, K. (1989). Thermal conductivity of crude oils. Exp. Therm. Fluid Sci. 2(1): 1-6
  27. Patnaik, P. (2002) Handbook of Inorganic Chemicals. The McGraw-Hill: New York
  28. Chalov K.V., Lugovoy Yu.V., Doluda V.Yu., Sidorov A.I., Sulman M.G., Kosivtsov Yu.Yu., Tkachenko O.P., Sulman E.M. (2014). Influence of metal chlorides on oil-slime thermocatalytic processing. Chem. Eng. J. 238: 219-226

Last update:

No citation recorded.

Last update:

No citation recorded.