skip to main content

Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study

1Chemical Engineering Department, Industrial Technology Faculty, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia

2Department of Chemical Engineering, Nagoya University, Nagoya 464-8603, Japan

Received: 18 Oct 2012; Revised: 14 Dec 2012; Accepted: 16 Dec 2012; Available online: 7 Mar 2013; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2013 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract
Non catalytic transesterification in sub and supercritical methanol have been used to produce biodiesel from palm oil and soybean oil. A kinetic study was done under reaction condition with temperature and time control. The experiments were carried out in a batch type reactor at reaction temperatures from 210 °C (subcritical condition) to 290 °C (the supercritical state) in the interval ranges of temperature of 20 °C and at various molar ratios of oil to methanol. The rate constants of the reaction were determined by employing a simple method, with the overall chemical reaction followed the pseudo-first–order reaction. Based on the results, the rate constants of vegetables oil were significantly influenced by reaction temperature, which were gradually increased at subcritical temperature, but sharply increased in the supercritical state. However, the rate constants of soybean oil were slightly higher than that of palm oil. The activation energy for transesterification of soybean oil was 89.32 and 79.05 kJ/mole for palm oil. Meanwhile, the frequency factor values of both oils were 72462892 and 391210 min-1, respectively. The rate reaction for both of oil were expressed as -rTG = 72462892 exp(-89.32/RT)CTG for soybean oil and -rTG = 391210 exp(-79.05/RT)CTG for palm oil. © 2013 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Keywords: Biodiesel; kinetic; transesterification; vegetables oil; sub- and supercritical methanol

Article Metrics:

  1. Yacob, A.R.; Mustajab, M.K.A.; Samadi, N.S. (2009). Calcination temperature of nano MgO effect on base transesterification of palm oil. World Academy of Science, Engineering and Technology 56: 408-412
  2. Kim, H.J.; Kang, B.S.; Kim, M.J.; Park, Y.M.; Kim, D.K.; Lee, J.S.; Lee, K.Y. (2004), Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalyst Today 93-5: 315-320. doi: 10.1016/j.cattod.2004.06.007
  3. Joelianingsih; Maeda, H.; Hagiwara, S.; Nabetani, H.; Sagara, Y.; Soerawidjaya, T.H.; Tambunan, A.H.; Abdullah K. (2008). Biodiesel fuels from palm oil via the non catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study. Renewable Energy 33: 1629-1636. doii: 10.1016/j.renene.2007.08.011
  4. Asri, N.P.; Anisa, A.; Rizqi, F.; Roesyadi, A., Budikaryono, K., Suprapto, Gunardi, I. (2010). Biodiesel production from palm oil using CaO/Al2O3 as a solid base catalyst. In Proceeding of the 1st International Seminar on Fundamental & application of Chemical Engineering, Kuta, Bali
  5. Imahara, H.; Minami, E.; Hari, S.; Saka, S. (2008). Thermal stability of biodiesel in supercritical methanol. Fuel 87: 1-6. doi: 10.1016/j.fuel.2007.04.003
  6. Minami, E.; Saka, S. (2006). Kinetics of hydrolyses and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85: 2479-2483. doi: 10.1016/j.fuel.2006.04.017
  7. Kusdiana, D.; Saka, S. (2001). Kinetics of transesterificationin rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80: 693-698. doi:
  8. 1016/S0016-2361(00)00140-X
  9. Zabeti, M.; Daud, W.H.A.W.; Aroua, M.K. (2010). Biodiesel production using alumina –supported cacium oxide: An optimization study. Fuel Processing Technology 91: 243-248. doi: 10.1016/j.fuproc.2009.10.004
  10. Kouzu, M.; Kasuno, T.; Tajika.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87: 2798-2806. doi: 10.1016/j.fuel.2007.10.019
  11. Zabeti, M.; Daud, W.H.A.W.; Aroua, M.K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology 90: 770-777. doi: /10.1016/j.fuproc.2009.03.010
  12. Asri, N.P.; Hartanto, F.; Ramadhan, R.; Savitri, S.D.; Gunardi, I.; Suprapto; Budikarjono, K.; Roesyadi, A. (2011). Transesterification of palm oil to methyl ester using γ-alumina supported base catalysts. In Proceeding of Bali International Seminar on Science and Technology (BISSTECH). Denpasar, Bali
  13. Saka, S.; Kusdiana, D. (2001). Biodisel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80: 225-231. doi: 10.1016/S0016-2361(00)00083-1
  14. Freedman, B.; Butterfield, R.O.; Pryde, E.H. (1986). Transesterification kinetics of Soybean oil. Journal American Oil Chemists Society 63: 1375-80. doi: 10.1007/BF02679606
  15. Diasakaou M, Louloudi A, Papayanakos N. 1999. Kinetics of non katalytic transesterification of soybean oil. Fuel 77: 1927-1932. doi: 10.1016/S0016-2361(98)00025-8x
  16. Dasari, M.A.; Goff, M.J.; Suppes, G.J. (2003). Noncatalytic alcholysis kinetic of soybean oil. Journal American Oil Chemist Society. 80(2): 189-192. doi: 10.1007/s11746-003-0675-3
  17. Dossin, T.F.; Reyniers, M.F.; Marin, G.B. (2006). Kinetic of heterogeneously MgO catalyzed transesterification. Applied Catalysis B: Environmental 61: 35-45. doi: 10.1016/j.apcatb.2005.04.005
  18. Stamencovic, O.S.; Lazic, M.L.; Todorovic, Z.B.; Velkovic, V.B.; Skala, D.U. (2007). The effect agitation intensity on alkali-catalyzed methanolysis on sunflower oil. Bioresource Technology 98: 2688-2699. doi: 10.1016/j.biortech.2006.09.024
  19. Song, E.S.; Lim, J.W.; Lee, H.S.; Lee, Y.W. (2008). Transesterification of RBD palm oil supercritical methanol, 44: 356-363. doi: 10.1016/j.supflu.2007.09.010
  20. Sumiarso, L. (2001). Indonesian policy on renewable energy development international biodiesel workshop, Medan, Indonesia
  21. Encinar, J.M.; González, J.F.; Sabio, E.; Ramiro, M.J. (1999). Preparation and properties ofbiodiesel from Cynara cardunculus L. oil. Industrial Engineering Chemistry Research. 38: 2927–2931. doi: 10.1021/ie990012x
  22. Xie, W.; Li, H. (2006). Alumina supported iodide as a heterogeneous catalyst for biodiesel productio from soybean oil. Journal of Molecular Catalysis A: Chemical, 255: 1-9. doi: 10.1016/j.molcata.2006.03.061
  23. Lopez, D.E.; Goodwin Jr, J.G.; Bruce, D.A.; Furuta, S. (2008). Esterification and Transesterification using modified zirconia catalyst. Applied Catalyst A: General 339: 76-83. doi: 10.1016/j.apcata.2008.01.009
  24. Vujivic; Comic, D.; Micic, R.; Boscovic, G. (2010). Kinetic of Biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel. 89: 2054-2061, doi: 10.1016/j.fuel.2009.11.043
  25. Levenspiel, O., (1999). Chemical reaction engineering. Wiley International edition: John Wiley and Sons, Inc, Canada

Last update:

No citation recorded.

Last update:

No citation recorded.