skip to main content

Brönsted Acid of Keggin Type Polyoxometalate Catalyzed Pinacol Rearrangement

1Department of Chemistry, Faculty of Mathematic and Natural Sciences, Sriwijaya University, Jl. Raya Palembang-Prabumulih Km.32, Ogan Ilir 30662, Sumatera Selatan, Indonesia

2Laboratory of Graduate School Program, Sriwijaya University, Jl. Padang Selasa, Palembang 30129, Sumatera Selatan, Indonesia

Received: 21 Jan 2013; Revised: 21 Apr 2014; Accepted: 3 May 2014; Available online: 27 Jul 2014; Published: 30 Aug 2014.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2014 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract
Keggin type polyoxometalates K4[a-SiW12O40] was synthesized and transformed to H4[a-SiW12O40]. Both catalysts have been used for pinacol rearrangement in toluene at 373 oK. The results showed that reaction of pinacol rearrangement did not proceed using K4[a-SiW12O40] as catalyst. The extent reac-tion time until 20 h also did not produce pinacolone as main product. By using H4[a-SiW12O40] as cata-lyst at 1 h reaction time gave conversion 100% with formation of pinacolone 72%. The reaction produce 27% of 2,3-dimethyl-1,3-butadiene as byproduct and 99% carbon balance for the reaction. This phe-nomenon indicated the Brönsted acid is a key role for catalytic reaction of pinacol rearrangement to pinacolone. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Keywords: Brönsted acid; Keggin type polyoxometalate; pinacol rearragement

Article Metrics:

  1. Campelo, J.M., Chakraborty, R., Marinas, J.M., Romero, A.A. (1998). Gas-Phase Pinacol Conversion on AlPO4, g-Al2O3 and SiO2 Catalysts. Catalysis Letters, 54: 91-93
  2. Nakamura, K., Osamura, Y. (1993). Theoretical Study of the Reaction Mechanism and Migratory Aptitude of the Pinacol Rearrangement. Journal of The American Chemical Society, 115: 9112-9120
  3. Loeser, E., Chen, G.P., He, T., Prasad, K., Repiê, O. (2002). Mechanism of the Pinacol-Pinacolone Rearrangement of 2,3-di-(3-pyridyl)-2,3-butanediol in Sulfuric Acid. Tetrahedron Letters, 43: 2161-2165
  4. Hsu, B.Y., Cheng, S. (1998). Pinacol Rearrangement over Metal-Substituted Alumino-phosphate Molecular Sieves. Microporous and Mesoporous Materials, 21:505-515
  5. Bezouhanova, C.P., Jabur, F.A. (1994). Zeolite Catalysts for Pinacol Rearrangement. Journal of Molecular Catalysis, 87: 39-46
  6. Toyoshi, Y., Nakato, T., Tamura, R., Takaha-shi, H., Tsue, H., Hirao, K.I.,Okuhara, T. (1998). Solid-Solid Catalysis by Ultrafine Crystallites of heteropoly Compound for Pinacol Rearrangement. Chemistry Letters, 27(2): 135-136
  7. Kamata, K., Nakagawa, Y., Yamaguchi, K., Mizuno, N. (2004). Efficient, Regioselective Epoxidation of Dienes with Hydrogen Peroxide Catalyzed by [g-SiW10O34(H2O)2]4-. Journal of Catalysis, 224: 224-228
  8. Uchida, S., Lesbani, A., Ogasawara, Y., Mi-zuno, N. (2012). Ionic Crystals [M3O(OOCC6H5)6(H2O)3]4[a-SiW12O40] (M=Cr,Fe) as Heterogeneous Catalysts for Pinacol Rearrangement. Inorganic Chemistry, 51: 775-777
  9. Tézé, A., Herve, G. (1990). a-,b-, and g-Dodecatungstosilicic Acids: Isomers and Related Lacunary Compounds. Inorganic Synthesis, 27: 93-94
  10. Lesbani, A. (2008). Sintesis dan Karakterisasi Senyawa Polyoxometalate H4[a-SiW12O40]. Jurnal Penelitian Sains, 11(1): 429-434. (in Indonesian)
  11. Yamase, T., Pope, M.T. (2002). Polyoxometalate Chemistry for Nano-Composite Design; Kluwer: Dordrecht
  12. Peter, R.G., James, A. de H. (2007). Fourier Transform Infrared Spectrometry, John Wiley and Sons. Page 421-422
  13. Zhiwu, Y., Qiang, W., Lei, C., Feng, D. (2012). Brønsted/Lewis Acid Sites Synergy in H-MCM-22 Zeolite Studied by 1H and 27Al DQ-MAS NMR Spectroscopy. Chinese Journal of Catalysis, 33(1): 129-139
  14. Török, B., Bucsi, I., Beregszászi, T., Kapocsi, I., Molnár, Á. (1996). Transformation of Diols in the Presence of Heteropoly Acids under Homogeneous and Heterogeneous Conditions. Journal of Molecular Catalysis A: Chemical, 107: 305-311

Last update:

No citation recorded.

Last update:

No citation recorded.