skip to main content

Investigate the Function and Structure of (Fe,Cr) La2Ti2O7 Photocatalyst Calcined under the Nitrogen Atmosphere

1School of Ceramic Engineering, Suranaree University of Technology, Muang, Nakhon-ratchsima, 30000, Thailand

2Synchrotron Light Research Institute (Public organization), Nakhon Ratchasima, Thailand

3School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand

Received: 11 Mar 2023; Revised: 8 Apr 2023; Accepted: 12 Apr 2023; Available online: 16 Apr 2023; Published: 30 Apr 2023.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Extensive research has been conducted on enhancing the photocatalytic activity of Lanthanum titanium oxide (La2Ti2O7) based photocatalysts. However, these photocatalysts were found to be inactive under visible light. To address this limitation, a modification was developed by co-doping Fe and Cr on La2Ti2O7 to enable visible light driven photocatalytic response. The calcination of (Fe,Cr) La2Ti2O7 was carried out under nitrogen atmosphere at various temperatures for 24 h. The results showed that the (Fe,Cr)-La2Ti2O7 calcined at 1250 °C for 24 h exhibited the highest methylene blue degradation under visible light. Synchrotron X-ray absorption spectroscopy indicated that Fe and Cr were substitutionally located adjacent to the Ti atom within the La2Ti2O7 structure. This metal  substitutionally facilitated electron transfer and perturbed the p-d hybridization by modifying the local electronic structure of the surrounding oxygen atoms and transition metal ions, thereby reducing the band gap energy and enhancing the photocatalytic capability. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photocatalyst; La2Ti2O7; (Fe, Cr) co-doping; Nitrogen atmosphere; XAS; Synchrotron
Funding: Suranaree University of Technology

Article Metrics:

  1. Nakata, K., Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001
  2. Shaham-Waldmann, N., Paz, Y. (2016). Away from TiO2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Materials Science in Semiconductor Processing, 42, 72-80. DOI: 10.1016/j.mssp.2015.06.068
  3. Spasiano, D., Marotta, R., Malato, S., Fernandez-Ibañez, P., Di Somma, I. (2015). Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 170-171, 90-123. DOI: 10.1016/j.apcatb.2014.12.050
  4. Banerjee, S., Dionysiou, D.D., Pillai, S.C. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental, 176-177, 396-428. DOI: 10.1016/j.apcatb.2015.03.058
  5. Gerischer, H., Heller, A. (1991). The role of oxygen in photooxidation of organic molecules on semiconductor particles. The Journal of Physical Chemistry, 95(13), 5261-5267. DOI: 10.1021/j100166a063
  6. Shemer, G., Paz, Y. (2011). Interdigitated Electrophotocatalytic Cell for Water Purification. International Journal of Photoenergy, 2011, 596710. DOI: 10.1155/2011/596710
  7. Batzill, M. (2011). Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy & Environmental Science, 4(9), 3275-3286. DOI: 10.1039/C1EE01577J
  8. Hwang, D.W., Cha, K.Y., Kim, J., Kim, H.G., Bae, S.W., Lee, J.S. (2003). Photocatalytic Degradation of CH3Cl over a Nickel-Loaded Layered Perovskite. Industrial & Engineering Chemistry Research, 42(6), 1184-1189. DOI: 10.1021/ie020457c
  9. Hwang, D.W., Kim, H.G., Kim, J., Cha, K.Y., Kim, Y.G., Lee, J.S. (2000). Photocatalytic Water Splitting over Highly Donor-Doped (110) Layered Perovskites. Journal of Catalysis, 193(1), 40-48. DOI: 10.1006/jcat.2000.2875
  10. Kim, J., Hwang, D.W., Kim, H.-G., Bae, S.W., Ji, S.M., Lee, J.S. (2002). Nickel-loaded La2Ti2O7 as a bifunctional photocatalyst. Chemical Communications, (21), 2488-2489. DOI: 10.1039/B208092C
  11. Ku, Y., Wang, L.C., Ma, C.M. (2007). Photocatalytic Oxidation of Isopropanol in Aqueous Solution Using Perovskite-Structured La2Ti2O7. Chemical Engineering & Technology, 30(7), 895-900. DOI: 10.1002/ceat.200700071
  12. Wang, R., Xu, D., Liu, J., Li, K., Wang, H. (2011). Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light. Chemical Engineering Journal, 168(1), 455-460. DOI: 10.1016/j.cej.2011.01.035
  13. Wang, Q., An, N., Chen, W., Wang, R., Wang, F., Lei, Z., Shangguan, W. (2012). Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi-Sm-V photocatalyst. International Journal of Hydrogen Energy, 37(17), 12886-12892. DOI: 10.1016/j.ijhydene.2012.05.080
  14. Borgarello, E., Kiwi, J., Graetzel, M., Pelizzetti, E., Visca, M. (1982). Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American Chemical Society, 104(11), 2996-3002. DOI: 10.1021/ja00375a010
  15. Lin, L., Chai, Y., Yang, Y., Wang, X., He, D., Tang, Q., Ghoshroy, S. (2013). Hierarchical Gd-La codoped TiO2 microspheres as robust photocatalysts. International Journal of Hydrogen Energy, 38(6), 2634-2640. DOI: 10.1016/j.ijhydene.2012.11.100
  16. Lin, Y., Jiang, Z., Zhu, C., Hu, X., Zhu, H., Zhang, X., Fan, J., Lin, S.H. (2013). The optical absorption and hydrogen production by water splitting of (Si,Fe)-codoped anatase TiO2 photocatalyst. International Journal of Hydrogen Energy, 38(13), 5209-5214. DOI: 10.1016/j.ijhydene.2013.02.079
  17. Long, R., English, N.J. (2011). Band gap engineering of double-cation-impurity-doped anatase-titania for visible-light photocatalysts: a hybrid density functional theory approach. Physical Chemistry Chemical Physics, 13(30), 13698-13703. DOI: 10.1039/C1CP21454C
  18. Zhang, J., Tse, K., Wong, M., Zhang, Y., Zhu, J. (2016). A brief review of co-doping. Frontiers of Physics, 11(6), 117405. DOI: 10.1007/s11467-016-0577-2
  19. Sharma, M., Pathak, M., Kapoor, P.N. (2018). The sol-gel method: pathway to ultrapure and homogeneous mixed metal oxide nanoparticles. Asian Journal of Chemistry, 30(7), 1405-1412. DOI: 10.14233/ajchem.2018.20845
  20. Venkatachalam, N., Palanichamy, M., Murugesan, V. (2007). Sol-gel preparation and characterization of nanosize TiO2: Its photocatalytic performance. Materials Chemistry and Physics, 104(2-3), 454-459. DOI: 10.1016/j.matchemphys.2007.04.003
  21. Hu, S., Jia, L., Chi, B., Pu, J., Jian, L. (2014). Visible light driven (Fe,Cr)-codoped La2Ti2O7 photocatalyst for efficient photocatalytic hydrogen production. Journal of Power Sources, 266, 304-312. DOI: 10.1016/j.jpowsour.2014.05.054
  22. Jin, M., Nagaoka, Y., Nishi, K., Ogawa, K., Nagahata, S., Horikawa, T., Katoh, M., Hayashi, J. (2008). Adsorption properties and photocatalytic activity of TiO2 and La-doped TiO2. Adsorption, 14(2), 257-263. DOI: 10.1007/s10450-007-9095-4
  23. Turon, V., Anxionnaz-Minvielle, Z., Willison, J.C. (2018). Replacing incandescent lamps with an LED panel for hydrogen production by photofermentation: Visible and NIR wavelength requirements. International Journal of Hydrogen Energy, 43(16), 7784-7794. DOI: 10.1016/j.ijhydene.2018.03.019
  24. Claypool, N.B., Lieth, J.H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae, 268, 109371. DOI: 10.1016/j.scienta.2020.109371
  25. Etacheri, V., Geiger, U., Gofer, Y., Roberts, G. A., Stefan, I.C., Fasching, R., Aurbach, D. (2012). Exceptional Electrochemical Performance of Si-Nanowires in 1,3-Dioxolane Solutions: A Surface Chemical Investigation. Langmuir, 28(14), 6175-6184. DOI: 10.1021/la300306v
  26. Ravel, B., Newville, M., (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537-541. DOI: 10.1107/S0909049505012719
  27. Pillai, S.C., Periyat, P., George, R., McCormack, D.E., Seery, M.K., Hayden, H., Colreavy, J., Corr, D., Hinder, S.J. (2007). Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst. The Journal of Physical Chemistry C, 111(4), 1605-1611. DOI: 10.1021/jp065933h
  28. Ma, Z., Wu, K., Sa, R., Li, Q., He, C., Yi, Z. (2015). Mechanism of enhanced photocatalytic activities on N-doped La2Ti2O7: An insight from density-functional calculations. International Journal of Hydrogen Energy, 40(2), 980-989. DOI: 10.1016/j.ijhydene.2014.11.088
  29. Low, J., Yu, J., Jaroniec, M., Wageh, S., Al-Ghamdi, A.A. (2017). Heterojunction Photocatalysts. Advanved Materials, 29(20), 1601694. DOI: 10.1002/adma.201601694
  30. Lin, N., Gong, Y., Wang, R., Wang, Y., Zhang, X. (2022). Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms. Journal of Hazardous Materials, 424, 127637. DOI: 10.1016/j.jhazmat.2021.127637
  31. Chen, H., Wu, Q., Wang, Y., Zhao, Q., Ai, X., Shen, Y., Zou, X. (2022). d–sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chemical Communications, 58(56), 7730-7740. DOI: 10.1039/D2CC02299K

Last update:

No citation recorded.

Last update:

No citation recorded.