skip to main content

Potential of Microalgae in Bioremediation of Wastewater

1Algae and Biomass Research Laboratory, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia

2UTM International, Level 8, Menara Razak, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia

3Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia

Received: 15 Mar 2021; Revised: 29 Apr 2021; Accepted: 29 Apr 2021; Available online: 4 May 2021; Published: 30 Jun 2021.
Editor(s): Istadi Istadi, Mohd Asmadi Mohammed Yussuf, Salman Raza Naqvi, Nor Aishah Saidina-Amin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increase in global pollution, industrialization and fast economic progress are considered to inflict serious consequences to the quality and availability of water throughout the world. Wastewater is generated from three major sources, i.e. industrial, agricultural, and municipal which contain pollutants, such as: xenobiotics, microplastics, heavy metals and augmented by high amount of carbon, phosphorus, and nitrogen compounds. Wastewater treatment is one of the most pressing issues since it cannot be achieved by any specific technology because of the varying nature and concentrations of pollutants and efficiency of the treatment technologies. The degradation capacity of these conventional treatment technologies is limited, especially regarding heavy metals, nutrients, and xenobiotics, steering the researchers to bioremediation using microalgae (Phycoremediation). Bioremediation can be defined as use of microalgae  for removal or biotransformation of pollutants and CO2 from wastewater with concomitant biomass production. However, the usage of wastewaters for the bulk cultivation of microalgae is advantageous for reducing carbon, nutrients cost, minimizing the consumption of freshwater, nitrogen, phosphorus recovery, and removal of other pollutants from wastewater and producing sufficient biomass for value addition for either biofuels or other value-added compounds. Several types of microalgae like Chlorella and Dunaliella have proved their applicability in the treatment of wastewaters. The bottlenecks concerning the microalgal wastewater bioremediation need to be identified and elucidated to proceed in bioremediation using microalgae. This objective of this paper is to provide an insight about the treatment of different wastewaters using microalgae and microalgal potential in the treatment of wastewaters containing heavy metals and emerging contaminants, with the specialized cultivation systems. This review also summarizes the end use applications of microalgal biomass which makes the bioremediation aspect more environmentally sustainable. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Wastewater; microalgae; Bioremediation; photobioreactors; heavy metals; emerging contaminants
Funding: Malaysia-Japan International Institute of Technology; Universiti Teknologi Malaysia

Article Metrics:

  1. Abdel-Raouf, N., Al-Homaidan, A., Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. DOI: 10.1016/j.sjbs.2012.04.005
  2. Sousa, J.C., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R, Silva, A.M. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146-162. DOI: 10.1016/j.jhazmat.2017.09.058
  3. Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 291, 121934. DOI: 10.1016/j.biortech.2019.121934
  4. Chowdhury, S., Mazumder, M.J., Al-Attas, O., Husain, T. (2016). Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Science of the total Environment, 569, 476-488. DOI: 10.1016/j.scitotenv.2016.06.166
  5. Eerkes-Medrano, D., Leslie, H.A., Quinn, B. (2019). Microplastics in drinking water: A review and assessment. Current Opinion in Environmental Science & Health, 7, 69-75. DOI: 10.1016/j.coesh.2018.12.001
  6. Farmer, A. (2018). Phosphate pollution: a global overview of the problem. Phosphorus: Polluter and Resource of The Future—Removal and Recovery From Wastewater; Schaum, C., Ed, p. 35-55. DOI: 10.2166/9781780408361_035
  7. Yousuf, A. (2020). Fundamentals of Microalgae Cultivation, in Microalgae Cultivation for Biofuels Production. Elsevier, p. 1-9. DOI: 10.1016/B978-0-12-817536-1.00001-1
  8. Okoro, V., Azimov, U., Munoz, J., Hernandez, H.H., Phan, A.N. (2019). Microalgae cultivation and harvesting: Growth performance and use of flocculants-A review. Renewable and Sustainable Energy Reviews, 115, 109364. DOI: 10.1016/j.rser.2019.109364
  9. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, 122804. DOI: 10.1016/j.biortech.2020.122804
  10. Gupta, S., Pawar, S.B., Pandey, R. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of the Total Environment, 687, 1107-1126. DOI: 10.1016/j.scitotenv.2019.06.115
  11. Borowitzka, M.A., Borowitzka, L.J. (1988). Micro-algal Biotechnology. Cambridge University Press
  12. Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., Wangikar, P.P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363-372. DOI: 10.1016/j.biortech.2014.11.040
  13. Schmidt, R.A., Wiebe, M.G., Eriksen, N.T. (2005). Heterotrophic high cell‐density fed‐batch cultures of the phycocyanin‐producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 90(1), 77-84. DOI: 10.1002/bit.20417
  14. Wan, M., Wang, Z., Zhang, Z., Wang, J., Li, S., Yu, A., Li, Y. (2016). A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology, 218, 272-278. DOI: 10.1016/j.biortech.2016.06.045
  15. Sakarika, M., Koutra, E., Tsafrakidou, P., Terpou, A., Kornaros, M. (2020). Microalgae-based Remediation of Wastewaters. in Microalgae Cultivation for Biofuels Production, Elsevier. p. 317-335. DOI: 10.1016/B978-0-12-817536-1.00020-5
  16. Lim, S.-L., Chu, W.-L., Phang, S.-M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101(19), 7314-7322. DOI: 10.1016/j.biortech.2010.04.092
  17. Riaño, B., Molinuevo, B., García-González, M. (2011). Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresource Technology, 102(23), 10829-10833. DOI: 10.1016/j.biortech.2011.09.022
  18. Kshirsagar, A.D. (2013). Bioremediation of wastewater by using microalgae: an experimental study. International Journal of Life Science Biotechnology and Pharma Research, 2(3), 339-346
  19. Sahu, O. (2014). Reduction of organic and inorganic pollutant from waste water by algae. International Letters of Natural Sciences, 13, 1-8
  20. Ji, M.-K., Abou-Shanab, R.A., Hwang, J.-H. Timmes, T.C., Kim, H.-C., Oh, Y.-K., Jeon, B.-H. (2013). Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. Journal of Environmental Engineering, 139(9), 1198-1205. DOI: 10.1061/(ASCE)EE.1943-7870.0000726
  21. Ahmad, F., Khan, A., Yasar, A. (2013). Comparative phycoremediation of sewage water by various species of algae. Proceedings of the Pakistan Academy of Sciences, 50(2), 131-139
  22. Órpez, R., Martínez, M.E., Hodaifa, G., El Yousfi, F., Jbari, N., Sánchez, S. (2009). Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination, 246(1-3), 625-630. DOI: 10.1016/j.desal.2008.07.016
  23. Dominic, V., Murali, S., Nisha, M. (2009). Phycoremediation efficiency of three micro algae chlo-rella vulgaris, synechocystis salina and gloeocapsa gelatinosa. SB Academic Review, 16(1), 138-146
  24. Van Den Hende, S., Carré, E., Cocaud, E., Beelen, V., Boon, N., Vervaeren, H. (2014). Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresource Technology, 161, 245-254. DOI: 10.1016/j.biortech.2014.03.057
  25. Gani, P., Sunar, N.M., Matias-Peralta, H.M., Abdul Latiff, A.A., Kamaludin, N.S., Parjo, U.K., Emparan, Q., Er. C.M. (2015). Experimental study for phycoremediation of Botryococcus sp. on greywater. In Applied Mechanics and Materials. Trans Tech Publ. DOI: 10.4028/www.scientific.net/AMM.773-774.1312
  26. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of Hazardous Materials, 323, 274-298. DOI: 10.1016/j.jhazmat.2016.04.045
  27. Zheng, H., Liu, M., Lu, Q., Wu, X., Ma, Y., Cheng, Y., Addy, M., Liu, Y., Ruan, R. (2018). Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters. Bioresource Technology, 249, 479-486. DOI: 10.1016/j.biortech.2017.10.057
  28. Ahmad, I., Abdullah, N., Yuzir, A., Koji, I., Mohamad. S.E. (2020). Efficacy of microalgae as a nutraceutical and sustainable food supplement. In 3rd ICA Research Symposium (ICARS) 2020. Johor, Malaysia
  29. Egberomoh, G., Fagade, O. (2016). Microalgal-bacterial consortium in polyaromatic hydrocarbon degradation of petroleum-based effluent. Journal of Bioremediation and Biodegradation, 7(4), 359. DOI: 10.4172/2155-6199.1000359
  30. Choi, Y.-K., Jang, H.M., Kan, E. (2018). Microalgal biomass and lipid production on dairy effluent using a novel microalga, Chlorella sp. isolated from dairy wastewater. Biotechnology and Bioprocess Engineering, 23(3), 333-340. DOI: 10.1007/s12257-018-0094-y
  31. Kim, S., Park, J.-e., Cho, Y.-B., Hwang, S.-J. (2013). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology, 144, 8-13. DOI: 10.1016/j.biortech.2013.06.068
  32. Zhang, Q., Li, X., Guo, D., Ye, T., Xiong, M., Zhu, L., Liu, C., Jin, S., Hu, Z. (2018). Operation of a vertical algal biofilm enhanced raceway pond for nutrient removal and microalgae-based byproducts production under different wastewater loadings. Bioresource Technology, 253, 323-332. DOI: 10.1016/j.biortech.2018.01.014
  33. Zhou, W., Li, Y., Gao, Y., Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245, 10-17. DOI: 10.1016/j.biortech.2017.08.160
  34. Wang, J.-H., Zhang, T.-Y., Dao, G.-H., Xu, X.-Q., Wang, X.-X., Hu, H.-Y. (2017). Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Applied microbiology and biotechnology, 101(7), 2659-2675. DOI: 10.1007/s00253-017-8184-x
  35. Shi, J., Podola, B., Melkonian, M. (2014). Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresource Technology, 154, 260-266. DOI: 10.1016/j.biortech.2013.11.100
  36. Hadiyanto, H., Christwardhana, M., Soetrisnanto, D. (2013). Phytoremediations of palm oil mill effluent (POME) by using aquatic plants and microalgae for biomass production. Journal of Environmental Science and Technology, 6(2), 79-90. DOI: 10.3923/jest.2013.79.90
  37. Hodaifa, G., Romero, A.M., Halioui, M., Sánchez, S. (2017). Combined Process for Olive Oil Mill Wastewater Treatment Based in Flocculation, Photolysis, Microfiltration and Microalgae Culture. in Euro-Mediterranean Conference for Environmental Integration. Springer. DOI: 10.1007/978-3-319-70548-4_326
  38. Ghazal, F.M., Mahdy, E.-S.M., EL-Fattah, M.S.A., EL-Sadany, A.E.G.Y., Doha, N.M.E. (2018). The use of microalgae in bioremediation of the textile wastewater effluent. Nature and Science, 16, 98-104
  39. Takáčová, A., Smolinská, M., Semerád, M., Matúš, P. (2015). Degradation of btex by microalgae Parachlorella kessleri. Petroleum & Coal, 57(2), 101-107
  40. Lv, J., Feng, J., Liu, Q., Xie, S. (2017). Microalgal cultivation in secondary effluent: recent developments and future work. International Journal of Molecular Sciences, 18(1), 79. DOI: 10.3390/ijms18010079
  41. Choi, H.-J. (2016). Dairy wastewater treatment using microalgae for potential biodiesel application. Environmental Engineering Research, 21(4), 393-400. DOI: 10.4491/eer.2015.151
  42. Michels, M.H., Vaskoska, M., Vermuë, M.H., Wijffels, R.H. (2014). Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water Research, 65, 290-296. DOI: 10.1016/j.watres.2014.07.017
  43. Sforza, E., Al Emara, M.K., Sharif, A., Bertucco, A. (2015). Exploitation of urban landfill leachate as nutrient source for microalgal biomass production. Chemical Engineering Transactions, 43, 373-378. DOI: 10.3303/CET1543063
  44. You, S., Ok, Y.S., Chen, S.S., Tsang, D.C., Kwon, E.E, Lee, J., Wang, C.-H. (2017). A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresource Technology, 246, 242-253. DOI: 10.1016/j.biortech.2017.06.177
  45. Ding, T., Lin, K., Yang, B., Yang, M., Li, J., Li, W., Gan, J. (2017). Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresource Technology, 238, 164-173. DOI: 10.1016/j.biortech.2017.04.018
  46. Escapa, C., Coimbra, R., Paniagua, S., García, A., Otero, M. (2016). Comparative assessment of diclofenac removal from water by different microalgae strains. Algal Research, 18, 127-134. DOI: 10.1016/j.algal.2016.06.008
  47. Wang, T., Yang, W.-L., Hong, Y., Hou, Y.-L. (2016). Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chemical Engineering Journal, 297, 304-314. DOI: 10.1016/j.cej.2016.03.038
  48. Escapa, C., Coimbra, R., Paniagua, S., García, A., Otero, M. (2015). Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technology, 185, 276-284. DOI: 10.1016/j.biortech.2015.03.004
  49. Cheng, J., Ye, Q., Li, K., Liu, J., Zhou, J. (2018). Removing ethinylestradiol from wastewater by microalgae mutant Chlorella PY-ZU1 with CO2 fixation. Bioresource Technology, 249, 284-289. DOI: 10.1016/j.biortech.2017.10.036
  50. Gattullo, C.E., Bährs, H., Steinberg, C.E., Loffredo, E. (2012). Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Science of the Total Environment, 416, 501-506. DOI: 10.1016/j.scitotenv.2011.11.033
  51. Xiong, J.-Q., Kurade, M.B., Jeon, B.-H. (2017). Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chemical Engineering Journal, 313, 1251-1257. DOI: 10.1016/j.cej.2016.11.017
  52. Kurade, M.B., Kim, J.R., Govindwar, S.P., Jeon, B.-H. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research, 20, 126-134. DOI: 10.1016/j.algal.2016.10.003
  53. Wang, S., Poon, K., Cai, Z. (2018). Removal and metabolism of triclosan by three different microalgal species in aquatic environment. Journal of Hazardous Materials, 342, 643-650. DOI: 10.1016/j.jhazmat.2017.09.004
  54. Liu, W., Chen, Q., He, N., Sun, K., Sun, D., Wu, X., Duan, S. (2018). Removal and Biodegradation of 17β-Estradiol and Diethylstilbestrol by the freshwater microalgae Raphidocelis subcapitata. International Journal of Environmental Research and Public Health, 15(3), 452. DOI: 10.3390/ijerph15030452
  55. Perales-Vela, H.V., Peña-Castro, J.M., Canizares-Villanueva, R.O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1-10. DOI: 10.1016/j.chemosphere.2005.11.024
  56. Al-Jabri, H., Das, P., Khan, S., Thaher, M., Abdul Quadir, M. (2021). Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water, 13(1), 27. DOI: 10.3390/w13010027
  57. Kumar, K.S., Dahms, H.-U., Won, E.-J, Lee, J.-S., Shin, K.-H. (2015). Microalgae–A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329-352. DOI: 10.1016/j.ecoenv.2014.12.019
  58. Travieso, L., Canizares, R., Borja, R., Benitez, F., Dominguez, A., Valiente, V. (1999). Heavy metal removal by microalgae. Bulletin of Environmental Contamination and Toxicology, 62(2), 144-151
  59. Sibi, G. (2016). Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy & Environment, 1(2), 172-177. DOI: 10.1016/j.gee.2016.08.002
  60. Li, Y., Yang, X., Geng, B. (2018). Preparation of immobilized sulfate-reducing bacteria-microalgae beads for effective bioremediation of copper-containing wastewater. Water, Air, & Soil Pollution, 229(3), 1-13. DOI: 10.1007/s11270-018-3709-1
  61. Kumar, R., Goyal, D. (2012). Waste water treatment and metal (Pb 2+, Zn 2+) removal by microalgal based stabilization pond system. Indian Journal of Microbiology, 50(1), 34-40. DOI: 10.1007/s12088-010-0063-4
  62. Shanab, S., Essa, A., Shalaby, E. (2012). Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signaling & Behavior, 7(3), 392-399. DOI: 10.4161/psb.19173
  63. Chong, A., Wong, Y., Tam, N. (2000). Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere, 41(1-2), 251-257. DOI: 10.1016/S0045-6535(99)00418-X
  64. Worku, A., Sahu, O. (2014). Reduction of heavy metal and hardness from ground water by algae. Journal of Applied & Environmental Microbiology, 2(3), 86-89. DOI: 10.12691/jaem-2-3-5
  65. Wollmann, F., Dietze, S., Ackermann, J.U., Bley, T., Walther, T., Steingroewer, J., Krujatz, F. (2019). Microalgae wastewater treatment: biological and technological approaches. Engineering in Life Sciences, 19(12), 860-871. DOI: 10.1002/elsc.201900071
  66. Barry, A., Wolfe, A., English, C., Ruddick, C., Lambert, D. (2016). National algal biofuels technology review. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. DOI: 10.2172/1259407
  67. Park, J., Craggs, R., Shilton, A. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42. DOI: 10.1016/j.biortech.2010.06.158
  68. Young, P., Taylor, M., Fallowfield, H. (2017). Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World Journal of Microbiology and Biotechnology, 33(6), 117. DOI: 10.1007/s11274-017-2282-x
  69. El Hafiane, F., El Hamouri, B. (2005). Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area. Water Science and Technology, 51(12), 125-132. DOI: 10.2166/wst.2005.0445
  70. Kerestecioğlu, F.Ö., Pekmezci, Y.T. (2019). Defining the Problems of Integrated Algae Photobioreactor Systems to Architecture. International Journal of Engineering Science and Application, 3(2), 52-70
  71. Chang, J.-S., Show, P.-L., Ling, T.-C., Chen, C.-Y., Ho, S.-H., Tan, C.-H., Nagarajan, D., Phong, W.-N. (2017). Photobioreactors, in Current developments in biotechnology and bioengineering. Elsevier. p. 313-352. DOI: 10.1016/B978-0-444-63663-8.00011-2
  72. Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., Perales, J.A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. DOI: 10.1016/j.ecoleng.2012.12.089
  73. Matamoros, V., Gutiérrez, R., Ferrer, I., García, J., Bayona, J.M. (2015). Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of Hazardous Materials, 288, 34-42. DOI: 10.1016/j.jhazmat.2015.02.002
  74. Mallick, N. (2020). Immobilization of Microalgae, in Immobilization of Enzymes and Cells. Springer. p. 453-471. DOI: 10.1007/978-1-0716-0215-7_31
  75. Sukačová, K., Trtílek, M., Rataj, T. (2015). Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research, 71, 55-63. DOI: 10.1016/j.watres.2014.12.049
  76. Lau, P., Tam, N., Wong, Y. (1998). Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresource Technology, 63(2), 115-121. DOI: 10.1016/S0960-8524(97)00111-9
  77. Sing, S.F., Isdepsky, A., Borowitzka, M.A., Moheimani, N.R. (2013). Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 18(1), 47-72. DOI: 10.1007/s11027-011-9294-x
  78. Green, F.B., Lundquist, T., Oswald, W. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9-20. DOI: 10.1016/0273-1223(95)00488-9
  79. Green, F., Lundquist, T., Quinn, N., Zarate, M., Zubieta, I., Oswald, W. (2003). Selenium and nitrate removal from agricultural drainage using the AIWPS® technology. Water Science and Technology, 48(2), 299-305. DOI: 10.2166/wst.2003.0134
  80. Johnson, D.B., Schideman, L.C., Canam, T., Hudson, R.J. (2018). Pilot-scale demonstration of efficient ammonia removal from a high-strength municipal wastewater treatment sidestream by algal-bacterial biofilms affixed to rotating contactors. Algal Research, 34, 143-153. DOI: 10.1016/j.algal.2018.07.009
  81. Gross, M., Henry, W., Michael, C., Wen, Z. (2013). Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresource Technology, 150, 195-201. DOI: 10.1016/j.biortech.2013.10.016
  82. Craggs, R.J., Lundquist, T.J., Benemann, J.R. (2013). Wastewater treatment and algal biofuel production, in Algae for biofuels and energy. Springer. p. 153-163. DOI: 10.1007/978-94-007-5479-9_9
  83. Montingelli, M., Tedesco, S., Olabi, A. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961-972. DOI: 10.1016/j.rser.2014.11.052
  84. Kangas, P., Mulbry, W., Klavon, P., Laughinghouse, H.D., Adey, W. (2007). High diversity within the periphyton community of an algal turf scrubber on the Susquehanna River. Ecological Engineering, 108, 564-572. DOI: 10.1016/j.ecoleng.2017.05.010
  85. Zhao, X., Kumar, K., Gross, M.A., Kunetz, T.E., Wen, Z. (2018). Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility. Water Research, 143, 467-478. DOI: 10.1016/j.watres.2018.07.001
  86. Borowitzka, M.A. (2013). High-value products from microalgae—their development and commercialisation. Journal of applied phycology, 25(3), 743-756. DOI: 10.1007/s10811-013-9983-9
  87. Chiu, S.-Y., Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Kuo, C.-M., Lin, C.-S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189. DOI: 10.1016/j.biortech.2014.11.080
  88. Ji, M.-K., Yun, H.-S., Hwang, B.S., Kabra, A.N., Jeon, B.-H., Choi, J. (2016). Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecological Engineering, 95, 527-533. DOI: 10.1016/j.ecoleng.2016.06.017
  89. Reyimu, Z., Özçimen, D. (2017). Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. Journal of Cleaner Production, 150, 40-46. DOI: 10.1016/j.jclepro.2017.02.189
  90. Ahmad, I., N. Abdullah, I. Koji, A. Yuzir, and S. Mohamad (2020) Anaerobic Digestion of Microalgae: Outcomes, Opportunities and Obstructions. Latin American Meetings on Anaerobic Digestion. p. 40-43
  91. Molinuevo-Salces, B., Mahdy, A., Ballesteros, M., González-Fernández, C. (2016). From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renewable Energy, 96, 1103-1110. DOI: 10.1016/j.renene.2016.01.090
  92. Batista, A.P., Ambrosano, L., Graça, S., Sousa, C., Marques, P.A., Ribeiro, B., Botrel, E.P., Neto, P.C., Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresource Technology, 184, 230-235. DOI: 10.1016/j.biortech.2014.10.064
  93. Cheng, J., Xu, J., Huang, Y., Li, Y., Zhou, J., Cen, K. (2015). Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresource Technology, 177, 240-246. DOI: 10.1016/j.biortech.2014.11.099
  94. Gille, A., Neumann, U., Louis, S., Bischoff, S.C., Briviba, K. (2018). Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. Journal of Functional Foods, 49, 285-294. DOI: 10.1016/j.jff.2018.08.039
  95. Rodrigues, D.B., Flores, É.M., Barin, J.S., Mercadante, A.Z., Jacob-Lopes, E., Zepka, L.Q. (2014). Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Research International, 65, 144-148. DOI: 10.1016/j.foodres.2014.06.037
  96. Alobwede, E., Leake, J.R., Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334, 113-123. DOI: 10.1016/j.geoderma.2018.07.049
  97. Gani, P., Mohamed Sunar, N., Matias Peralta, H.M., Abdul Latiff, A.A., Parjo, U.K. (2015). Phycoremediation of wastewaters and potential hydrocarbon from microalgae: a review. Advances in Environmental Biology, 9(20), 1-8
  98. Ahmad, I., Yuzir, A., Mohamad, S., Iwamoto, K., Abdullah, N. (2021). Role of Microalgae in Sustainable Energy and Environment. IOP Conference Series: Materials Science and Engineering, 1051, 012059. DOI: 10.1088/1757-899X/1051/1/012059
  99. Singh, K., Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9), 807-878. DOI: 10.1080/10643380903218376
  100. Wolf, J., Ross, I.L., Radzun, K.A., Jakob, G., Stephens, E., Hankamer, B. (2015). High-throughput screen for high performance microalgae strain selection and integrated media design. Algal Research, 11, 313-325. DOI: 10.1016/j.algal.2015.07.005
  101. Solovchenko, A., Verschoor, A.M., Jablonowski, N.D., Nedbal, L. (2016). Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnology Advances, 34(5), 550-564. DOI: 10.1016/j.biotechadv.2016.01.002
  102. Montemezzani, V., Duggan, I.C., Hogg, I.D., Craggs, R.J. (2015). A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal Research, 11, 211-226. DOI: 10.1016/j.algal.2015.06.024
  103. Salama, E.-S., Kurade, M.B., Abou-Shanab, R.A., El-Dalatony, M.M., Yang, I.-S., Min, B., Jeon, B.-H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 79, 1189-1211. DOI: 10.1016/j.rser.2017.05.091

Last update:

No citation recorded.

Last update:

No citation recorded.