Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
BibTex Citation Data :
@article{BCREC10316, author = {Viqhi Aswie and Lailatul Qadariyah and Mahfud Mahfud}, title = {Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {16}, number = {1}, year = {2021}, keywords = {Pyrolysis; Microalgae; Chlorella sp.; Activated carbon; Biofuel}, abstract = { Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H 2 0) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m 3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {205--213} doi = {10.9767/bcrec.16.1.10316.205-213}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/10316} }
Refworks Citation Data :
Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H20) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the right for publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant all copy rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have all copy rights for a large range of uses of your article, including use by your employing institute or company. These Author copy rights can be exercised without the need to obtain specific permission. Authors who publishing in BCREC journals have wide copy rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Right Transfer Agreement for Publishing (RTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Right Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of right for publishing (RTAP), our journal Author(s) still retain (or are granted back) significant scholarly copy rights as mentioned before.
The Right Transfer Agreement for Publishing (RTAP) Form can be downloaded here: [Right Transfer Agreement for Publishing (RTAP) Form BCREC 2025]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id ; bcrec[at]che.undip.ac.id
(This policy statements has been updated at 24th January 2024)