skip to main content

Enhancing Energy Efficiency of Cumene Production Through Reactor Output Recycling Modification in a Heat Exchanger

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

Received: 28 Dec 2023; Revised: 19 Jan 2024; Accepted: 20 Jan 2024; Available online: 22 Jan 2024; Published: 20 Jun 2024.
Editor(s): Istadi Istadi, Teguh Riyanto
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Cumene production generally involves irreversible and exothermic reactions that leads to an increase in product temperature and needs to be cooled for further processes. The high temperature of reactor product can be utilized as a heat transfer fluid in heat exchanger. This modification process is essential for improving energy efficiency by recycling the reactor output with high temperature as a heat transfer fluid, so that the implementation of replacing the heater with a heat exchanger can be carried out for the process of increasing the initial feed temperature. In an effort to enhance energy efficiency in the cumene production process, simulations were conducted using HYSYS and the comparison of energy efficiency for both basic and modified processes can be evidenced by comparing the total amount of energy required during the process. The results shows that the total amount of energy required for the modified process is 39,814,003.7 kJ/h, while for the basic process is 40,588,937.4 kJ/h, with a difference of 774,933.7299 kJ/h. Since the total amount of energy required in the modified process is smaller than the basic process, then the modification process will increase the energy efficiency of cumene production. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Cumene; Process modification; Energy efficiency; Reactor output; Heat exchanger

Article Metrics:

  1. Srivastava, P., Gupta, A., & Kaistha, N. (2023). Compact process for cumene manufacture: Synthesis, design and control. Chemical Engineering Research and Design, 190, 220-232. DOI: 10.1016/j.cherd.2022.12.026
  2. Zhai, J., Liu, Y., Li, L., Zhu, Y., Zhong, W., & Sun, L. (2015). Applications of dividing wall column technology to industrial-scale cumene production. Chemical Engineering Research and Design, 102, 138-149. DOI: 10.1016/j.cherd.2015.06.020
  3. Samad, A., Saghir, H., Ahmad, I., Ahmad, F., & Caliskan, H. (2023). Thermodynamic analysis of cumene production plant for identification of energy recovery potentials. Energy, 270, 126840. DOI: 10.1016/j.energy.2023.126840
  4. Thakur, R., Barman, S., & Gupta, R. K. (2016). Synthesis of cumene by transalkylation over modified beta zeolite: a kinetic study. Brazilian Journal of Chemical Engineering, 33, 957-967. DOI: 10.1590/0104-6632.20160334s20150333
  5. Junqueira, P. G., Mangili, P. V., Santos, R. O., Santos, L. S., & Prata, D. M. (2018). Economic and environmental analysis of the cumene production process using computational simulation. Chemical Engineering and Processing-Process Intensification, 130, 309-325. DOI: 10.1016/j.cep.2018.06.010
  6. Zarutskii, S. A., Kichatov, K. G., Nikitina, A. P., Prosochkina, T. P., & Samoilov, N. A. (2018). Simulation of the Process for Cumene Production by Alkylation of Benzene in Equilibrium Reactor. Petroleum Chemistry, 58, 681-686. DOI: 10.1134/S0965544118080212
  7. Flegiel, F., Sharma, S., & Rangaiah, G. P. (2015). Development and multiobjective optimization of improved cumene production processes. Materials and Manufacturing Processes, 30(4), 444-457. DOI: 10.1080/10426914.2014.967355
  8. Chen, J., Liu, X., Jing, S., Xiong, G., Shang, X., & Cheng, C. (2016, July). A process simulation-based quantitative HAZOP analysis method. In 2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), 239-244. DOI: 10.1109/SOLI.2016.7551694
  9. Flegiel, F., Sharma, S., & Rangaiah, G. P. (2015). Development and multiobjective optimization of improved cumene production processes. Materials and Manufacturing Processes, 30(4), 444-457. DOI: 10.1080/10426914.2014.967355
  10. Klemeš, J. J., Wang, Q. W., Varbanov, P. S., Zeng, M., Chin, H. H., Lal, N. S., ... & Walmsley, T. G. (2020). Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation. Renewable and Sustainable Energy Reviews, 120, 109644. DOI: 10.1016/j.rser.2019.109644
  11. Hazmi, H. A. (2022) Process Simulation & Sensivity Analysis of Cumene Production form an Integrated Alkylation and Transalkylation Reaction. Journal of Chemical Process Engineering, 7(2), 64-78. DOI: 10.33536/jcpe.v7i2.1086
  12. Purnamasari, H. N., Kurniawan, T., & Nandiyanto, A. B. D. (2021). Design of shell and tube type heat exchanger for nanofibril cellulose production process. International Journal of Research and Applied Technology (INJURATECH), 1(2), 318-329. DOI: 10.34010/injuratech.v1i2.6410
  13. Dhavle, S. V., Kulkarni, A. J., Shastri, A., & Kale, I. R. (2018). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Computing and Applications, 30, 111-125. DOI: 10.1007/s00521-016-2683-z
  14. Kartika, S. A., Abdullah, N. H., & Saksono, P. (2023). Energy saving analysis using burner/thermal tank and heater electric in the marine fuel oil (mfo) treatment process. SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin, 17(1), 7-16. DOI: https://doi.org/10.24853/sintek.17.1.7-16
  15. Patel, A. (2023). Heat Exchangers in Industrial Applications: Efficiency and Optimization Strategies. International Journal of Engineering Research & Technology (IJERT),12. DOI: 10.1016/j.seppur.2016.06.031
  16. Edreis, E., & Petrov, A. (2020, November). Types of heat exchangers in industry, their advantages and disadvantages, and the study of their parameters. In IOP Conference Series: Materials Science and Engineering, 963(1), 012027. DOI: 10.1088/1757-899X/963/1/012027
  17. Harker, J. H., Backhurst, J. R., & Richardson, J. F. (2013). Chemical Engineering Volume 2 (2)
  18. Panesar, A., & Bernagozzi, M. (2019). Two-phase expander approach for next generation of heat recovery systems. International Journal of Renewable Energy Development, 8(3), 203-213. DOI: 10.14710/ijred.8.3.203-213
  19. Dulău, M., Karoly, M., & Dulău, T. M. (2018). Fluid temperature control using heat exchanger. Procedia Manufacturing, 22, 498-505. DOI: 10.1016/j.promfg.2018.03.058
  20. Song, J., Liu, Z., Knehr, K. W., Kubal, J. J., Kim, H. K., Dees, D. W., ... & Ahmed, S. (2021). Pathways towards managing cost and degradation risk of fast charging cells with electrical and thermal controls. Energy & Environmental Science, 14(12), 6564-6573. DOI: 10.1039/D1EE02286E

Last update:

No citation recorded.

Last update:

No citation recorded.