skip to main content

Improving Mass Efficiency in Ammonia Production from Hydrogen and Nitrogen Through Optimizing Operating Condition

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

Received: 26 Dec 2023; Revised: 14 Feb 2024; Accepted: 15 Feb 2024; Available online: 4 Mar 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi, Teguh Riyanto
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

As one of the main raw materials in the fertilizer industry, global ammonia consumption continued to increase from 2010 to 2020, at a rate of about 1.81% per year. The ammonia production process is divided into four main stages: Feed Gas Pre-Treatment, Syngas Generation, Syngas Purification, and Ammonia Synthesis. The raw materials required for the ammonia production process include natural gas, steam, and air. To meet the increasing demand for ammonia, a production process with high efficiency is required in order to produce high conversion. One of the efforts to increase efficiency is through the addition of recycling, compressors, and TEE in the Aspen HYSYS simulation. With this increase in conversion, it is expected that the quantity of ammonia products produced will be greater, and the use of materials and energy will be more optimal. The method used to increase mass efficiency is by adding recycling, compressors, TEE, and adjusting the pressure in the separator. From this simulation, it can be concluded that our simulation shows an increase in mass efficiency compared to the simulation without the addition of compressors, recycle, and TEE in Aspen HYSYS. We can increase the mass conversion from 97% up to 99.09%. Net energy of the process can be reduced from 2.59e+8 to 1.64e+8 BTU/h. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Ammonia production; syngas; optimization of operating conditions; Ammonia Synthesis

Article Metrics:

  1. Heryadi, R., Uyun, A. S., Yandri, E., Nur, S. M., Abdullah, K., Anne, O. (2019). Biomass to methanol plant based on gasification of palm empty fruit bunch. In IOP Conference Series: Earth and Environmental Science (Vol. 293, p. 012036). IOP Publishing. URL: https://iopscience.iop.org/article/10.1088/1755-1315/293/1/012036
  2. SmartLab, Lembar Data Keselamatan Bahan dengan No.011: Ammonia. (2016). URL: https://smartlab.co.id/assets/pdf/MSDS_AMMONIA_SOLUTION_(INDO).pdf
  3. Apodaca, L. E. (2019). Nitrogen (fixed)—ammonia. US Geological Survey. URL: https://www.usgs.gov/centers/national-minerals-information-center/nitrogen-statistics-and-information
  4. Linde, Safety Data Sheet : Hydrogen. URL: https://www.lindegas.no/no/images/Hydrogen%2C
  5. Kusumaningrum, S. R., Rosalin, N. A., Wiguno, A., Wibawa, G. (2023). Pra-Desain Pabrik Amonia dari Gas Alam. Jurnal Teknik ITS, 12 (2), B103-B109. URL: https://ejurnal.its.ac.id/index.php/teknik/article/view/121274
  6. Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E., Stoukides, M. (2020). An electrochemical haber- URL: https://www.sciencedirect.com/science/article/pii/S2542435119305
  7. Darmawan, A., Aziz, M., Ajiwibowo, M. W., Biddinika, M. K., Tokimatsu, K., Lokahita, B. (2022). Integrated ammonia production from the empty fruit bunch. Innovative Energy Conversion from Biomass Waste, 3, 149. DOI: 10.1016/B978-0-323-85477-1.00006-3
  8. Amhamed, A.I., Shuibul Qarnain, S., Hewlett, S., Sodiq, A., Abdellatif, Y., Isaifan, R.J., Alrebei, O.F. (2022). Ammonia Production Plants. Fuels, 3 (3), 408-435 DOI: 10.3390/fuels3030026
  9. Pattabathula, V., Richardson, J. (2016). Introduction to ammonia production. Chem. Eng. Prog,. 112 (9), 69-75. URL: https://www.aiche.org/sites/default/files/cep/20160969.pdf
  10. Siringo-ringo, N. O., Sari, I., Selpiana, S. (2019). Evaluasi kinerja ammonia converter pabrik urea ditinjau dari konversi N2 dan H2 dengan menggunakan hysys. Jurnal Teknik Kimia, 25 (3), 80-85. DOI: 10.36706/jtk.v25i3.133
  11. Rokhayati, E., Kiss, A.A. (2022). Unraveling the effect of variable natural gas feedstock on an industrial ammonia process. Computers & Chemical Engineering, 166, 107951. DOI: 10.1016/j.compchemeng.2022.107951
  12. Bustan, M.D. (2010). Pengaruh Proses Pengintegrasian Panas terhadap Konversi Amoniak pada Intercooler Reaktor Amoniak dengan Analisis Eksergi dan Pinch. Reaktor, 13 (2), 117-123. DOI: 10.14710/reaktor.13.2.117-123
  13. El Moneim, N.A., Ismail, I., M.M, N. (2020). Simulation of ammonia production using HYSYS software. Journal of Simulation, 62. DOI: 10.7176/CPER/62-03
  14. Pelaquim, F.P., Bitencourt, R.G., Neto, A.M.B., Dalmolin, I.A.L., da Costa, M.C. (2022). Carbon dioxide solubility in Deep Eutectic Solvents: Modelling using Cubic Plus Association and Peng-Robinson equations of state. Process Safety and Environmental Protection, 163, 14-26. DOI: 10.1016/j.psep.2022.04.075
  15. Williams, G., Pattabathula, V. (2013). One Hundred Years of Ammonia Production–A Recap of Significant Contributions to Feeding the World. In 58th Atmual Safety in Ammonia Plants and Related Facilities Symposium, AIChE (Aug. 25-29, 2013). sure. Capacities increased from (Vol. 100, pp. 40-50). URL: https://www.aiche.org/sites/default/files/docs/conferences
  16. Shamiri, A., Aliabadi, N. (2021). Modeling and performance improvement of an industrial ammonia synthesis reactor. Chemical Engineering Journal Advances, 8, 100177. DOI: 10.1016/j.ceja.2021.100177

Last update:

No citation recorded.

Last update:

No citation recorded.