Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
BibTex Citation Data :
@article{JCERP20091, author = {Astrid Eka Permatasari and Syalaisa Nanda Syabila and Hly Tyas Ajeng Kartika Dewi and Rufaidah Nilam Zahra}, title = {Improving Net Energy Efficiency of Dimethyl Ether Production Process by Methanol Dehydration}, journal = {Journal of Chemical Engineering Research Progress}, volume = {1}, number = {1}, year = {2024}, keywords = {Dimethyl ether; methanol; dehydration; net energy; efficiency}, abstract = { Dimethyl ether (DME) is a source of fuel that produces clean energy for the future. Methanol can be used as a raw material for the manufacture of DME as a natural gas that is treated for synthesis. This paper evaluates how to improve net energy efficiency in DME production and how to review the net energy efficiency calculations in DME production. Methods used for production of DME are methanol dehydration, thermodynamics examination, also improving the net energy efficiency of DME with the addition of the heat exchanger (E-100), the addition of a heater (E-104) before entering a column (T-102), and moved the mixer position before the heater (E-100). By modifying the addition of a heat exchanger (E-100), heater (E-104), and changing the position of the mixer in DME production, it has been proven that it can reduce energy requirements in the dimethyl ether synthesis process from methanol and increase net energy efficiency by up to 98.83%. The results of the case study indicate that the addition heat exchanger (E-100) able to reduce the heater load after the creation process and remove the cooler (E-101) that existed before creation, then the addition of the heater (E-104) serves to reduce the load of Qcond2 and Qreb2 on columns (T-102), also the position of the mixer for the methanol recycling flow is moved before the heater (E-100) is intended to remove the heaters (E-103). Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {3032-7059}, pages = {33--41} doi = {10.9767/jcerp.20091}, url = {https://journal.bcrec.id/index.php/jcerp/article/view/20091} }
Refworks Citation Data :
Dimethyl ether (DME) is a source of fuel that produces clean energy for the future. Methanol can be used as a raw material for the manufacture of DME as a natural gas that is treated for synthesis. This paper evaluates how to improve net energy efficiency in DME production and how to review the net energy efficiency calculations in DME production. Methods used for production of DME are methanol dehydration, thermodynamics examination, also improving the net energy efficiency of DME with the addition of the heat exchanger (E-100), the addition of a heater (E-104) before entering a column (T-102), and moved the mixer position before the heater (E-100). By modifying the addition of a heat exchanger (E-100), heater (E-104), and changing the position of the mixer in DME production, it has been proven that it can reduce energy requirements in the dimethyl ether synthesis process from methanol and increase net energy efficiency by up to 98.83%. The results of the case study indicate that the addition heat exchanger (E-100) able to reduce the heater load after the creation process and remove the cooler (E-101) that existed before creation, then the addition of the heater (E-104) serves to reduce the load of Qcond2 and Qreb2 on columns (T-102), also the position of the mixer for the methanol recycling flow is moved before the heater (E-100) is intended to remove the heaters (E-103). Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for UPT Laboratorium Terpadu, Diponegoro University jointly with BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and UPT Laboratorium Terpadu, Diponegoro University jointly with BCREC Publishing Group. This agreement deals with the transfer or license of the non-exclusive copyright of publishing to UPT Laboratorium Terpadu, Diponegoro University jointly with BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. UPT Laboratorium Terpadu, Diponegoro University jointly with BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
The Author(s) have all rights for a large range of uses of your article, including use by your employing institute or company, but it should follow the open access license of Creative Common CC-by-SA License. Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publishers of JCERP journal (UPT Laboratorium Terpadu,Diponegoro University (Laboratory of Plasma-Catalysis), jointly with BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright (non-exclusive) Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright (non-exclusive) Transfer Agreement for Publishing' form by online version of this agreement.
Journal of Chemical Engineering Research Progress (JCERP), UPT Laboratorium Terpadu,Diponegoro University, jointly with BCREC Publishing Group, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of Chemical Engineering Research Progress are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright (non-exclusive) for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright (non-exclusive) Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form JCERP 2024]
The (non-exclusive) copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Journal of Chemical Engineering Researc ProgressLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: jcerp[at]live.undip.ac.id
(This policy statements has been updated at 1st March 2024)