skip to main content

Improving Heat Efficiency of Aniline Production Process by Modifying Heat Transfer Fluid Looping System in Heating and Cooling Process

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, 50275, Semarang, Jawa Tengah, Indonesia

Received: 20 Dec 2023; Revised: 13 Jan 2024; Accepted: 13 Jan 2024; Available online: 19 Jan 2024; Published: 30 Jun 2024.
Editor(s): Istadi Istadi, Teguh Riyanto
Open Access Copyright (c) 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The nitrobenzene hydrogenation process is a highly exothermic reaction which causes the product temperature will increase and then needs to be cooled down with a heat exchanger. The modification process is needed to improve the heat efficiency of the nitrobenzene hydrogenation process by utilizing the heat from reactor product. Heat transfer fluid is used as a medium of heat transfer for both heating and cooling, so that will create a looping heat transfer process. The looping system of heat transfer fluid receives heat from reactor product and then reuses the heat to reheat the recycled hydrogen and for other utilities, so additional energy for these processes is not required. The process modification was simulated using Aspen HYSYS and the comparison of heat efficiency between the basic and the modified process is calculated using the net-energy formula. The results obtained that the net-energy (NE) value for both basic and modified process is 96,714,359.832 kJ/h and 9.869 kJ/h. This shows that the modified process has better energy efficiency compared to the basic process as the net-energy value is closer to zero. Therefore, this modification increases the heat efficiency of the aniline production through nitrobenzene hydrogenation process. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Aniline; Nitrobenzene; Hydrogenation; Process modification; Heat efficiency; Net-energy

Article Metrics:

  1. Anjalin, M., Kanagathara, N., Baby Suganthi, A.R. (2020). A brief review on aniline and its derivatives. Materials Today: Proceedings, 33, 4751–4755. DOI: 10.1016/j.matpr.2020.08.358
  2. Lin, B., Tan, B., Zhang, Q., Li, M., Feng, J., Su, J., He, J., Zhang, Y., Liu, X., Wu, N., Chen, J. (2023). Evolution of aniline degradation and nitrogen removal performance in electro-enhanced sequence batch reactor under salinity stress: Sludge characteristics and microbial diversity. Environmental Pollution, 334(April), 122201. DOI: 10.1016/j.envpol.2023.122201
  3. Li, X. (2018). Preparation, properties and application of polyaniline nanocomposites. Chemical Engineering Transactions, 71, 889–894. DOI: 10.3303/CET1871149
  4. Wang, L., Song, J. (2023). Research progress of aniline vapor sensor: A review. Sensors and Actuators A: Physical, 362(September), 114676. DOI: 10.1016/j.sna.2023.114676
  5. Mohanta, V.L., Mishra, B.K. (2020). Integration of cancer and non-cancer human health risk assessment for Aniline enriched groundwater: a fuzzy inference system-based approach. Environmental Geochemistry and Health, 42(11), 3623–3639. DOI: 10.1007/s10653-020-00590-7
  6. Cichocki, Ł., Kong, L., Wang, C., Przyjazny, A., Boczkaj, G. (2024). First highly effective non-catalytic nitrobenzene reduction in UV/dithionite system with aniline production – Advanced reduction process (ARP) approach. Chemical Engineering Journal, 479(June 2023), 147878. DOI: 10.1016/j.cej.2023.147878
  7. Hajdu, V., Muránszky, G., Nagy, M., Kopcsik, E., Kristály, F., Fiser, B., Viskolcz, B., Vanyorek, L. (2022). Development of High‐Efficiency, Magnetically Separable Palladium‐Decorated Manganese‐Ferrite Catalyst for Nitrobenzene Hydrogenation. International Journal of Molecular Sciences, 23(12). DOI: 10.3390/ijms23126535
  8. Khazayialiabad, A., Iranshahi, D., Ebrahimian, S. (2021). A conceptual evaluation of a new multifunctional reactor containing glycerol steam reforming and nitrobenzene hydrogenation. Chemical Engineering and Processing - Process Intensification, 164(August 2020), 108405. DOI: 10.1016/j.cep.2021.108405
  9. Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P. (2015). Hydrogenation of Nitrobenzene over a Pd/Al2O3 Catalyst - Mechanism and Effect of the Main Operating Conditions. Chemical Engineering and Technology, 38(9), 1625–1636. DOI: 10.1002/ceat.201400468
  10. Grisales Díaz, V.H., Willis, M.J. (2022). Multi-objective optimization of aniline and hydrogen production in a directly coupled membrane reactor. International Journal of Hydrogen Energy, 47(19), 10483–10499. DOI: 10.1016/j.ijhydene.2022.01.128
  11. Fukui, M., Koshida, W., Tanaka, A., Hashimoto, K., Kominami, H. (2020). Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO2 utilizing methylamine as a hydrogen donor. Applied Catalysis B: Environmental, 268(September 2019), 118446. DOI: 10.1016/j.apcatb.2019.118446
  12. Bagno, A., & Terrier, F. (2001). Carbon and nitrogen basicity of aminothiophenes and anilines. Journal of Physical Chemistry A, 105(26), 6537–6542. DOI: 10.1021/jp010439t
  13. Keypour, H., Noroozi, M., Rashidi, A., Shariati Rad, M. (2015). Application of Response Surface Methodology for Catalytic Hydrogenation of Nitrobenzene to Aniline Using Ruthenium Supported Fullerene Nanocatalyst. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 34(1), 21–32
  14. Ullmann, F. (2003). Ullmann’s Encyclopedia of Industrial Chemistry. In Ullmann’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007
  15. Farsi, M. (2014). Heat integration of isobutane dehydrogenation and hydrogenation of nitrobenzene to aniline in radial flow moving bed reactors: Modelling and operability investigation. Journal of Natural Gas Science and Engineering, 19, 23–31. DOI: 10.1016/j.jngse.2014.04.009
  16. Keklikcioglu, O., Ozceyhan, V. (2022). Heat transfer augmentation in a tube with conical wire coils using a mixture of ethylene glycol/water as a fluid. International Journal of Thermal Sciences, 171(July 2021), 107204. DOI: 10.1016/j.ijthermalsci.2021.107204
  17. Huang, A., Bao, Y., Li, H., Liu, Y., Zheng, X., Qin, G. (2022). Thermal conductivity of ethylene glycol and water binary mixtures at evaluated temperature and pressure. Journal of Chemical Thermodynamics, 175(August), 106900. DOI: 10.1016/j.jct.2022.106900
  18. Morisse, C.G.A., McCullagh, A.M., Campbell, J.W., How, C., Maclaren, D.A., Carr, R.H., Mitchell, C.J., Lennon, D. (2021). Toward High Selectivity Aniline Synthesis Catalysis at Elevated Temperatures. Industrial and Engineering Chemistry Research, 60(49), 17917–17927. DOI: 10.1021/acs.iecr.1c03695
  19. Daems, N., Wouters, J., Van Goethem, C., Baert, K., Poleunis, C., Delcorte, A., Hubin, A., Vankelecom, I.F.J., Pescarmona, P.P. (2018). Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Applied Catalysis B: Environmental, 226, 509–522. DOI: 10.1016/j.apcatb.2017.12.079
  20. Felder, R.M. Rousseau, R.W. (2005). Elementary Principles of Chemical Processes 3rd edition. John Wiley & Sons
  21. Vakkilainen, E.K.E. (2017). Steam generation from biomass. In Steam Generation from Biomass : Butterworth Heinmann (p. 302). https://www.dawsonera.com/readonline/9780128044070
  22. Khademi, M.H., Lotfi-Varnoosfaderani, M. (2022). Use of biomass-derived glycerol as an alternative to fossil fuels for aniline production: Energy saving and environmental aspects. Fuel, 310(PA), 122359. DOI: 10.1016/j.fuel.2021.122359
  23. Bayat, M. (2017). Paraffin dehydrogenation and hydrogenation of nitrobenzene to aniline: Optimal design and operating condition. Petroleum Science and Technology, 35(22), 2146–2151. DOI: 10.1080/10916466.2017.1386680
  24. Bayat, M., Garmroodi Asil, A. (2020). Coproduction of Olefin and Aniline via a Novel Multifunctional Reactor. Industrial and Engineering Chemistry Research, 59(14), 6445–6459. DOI: 10.1021/acs.iecr.9b06035
  25. Abo-Ghander, N.S., Logist, F., Grace, J.R., Van Impe, J.F.M., Elnashaie, S.S.E.H., Lim, C.J. (2010). Optimal design of an autothermal membrane reactor coupling the dehydrogenation of ethylbenzene to styrene with the hydrogenation of nitrobenzene to aniline. Chemical Engineering Science, 65(10), 3113–3127. DOI: 10.1016/j.ces.2010.02.007
  26. Abo-Ghander, N.S., Logist, F., Grace, J.R., Van Impe, J.F.M., Elnashaie, S.S.E.H., Lim, C.J. (2014). Heterogeneous modeling of an autothermal membrane reactor coupling dehydrogenation of ethylbenzene to styrene with hydrogenation of nitrobenzene to aniline: Fickian diffusion model. Chemical Engineering and Processing: Process Intensification, 77, 50–65. DOI: 10.1016/j.cep.2013.12.009
  27. Ghadiri, M., Hemmati, A., Rezakazemi, M. (2021). Numerical investigation of ethylbenzene dehydrogenation and nitrobenzene hydrogenation in a membrane reactor: Effect of operating conditions. International Journal of Hydrogen Energy, 46(56), 28641–28656. DOI: 10.1016/j.ijhydene.2021.06.100
  28. Partenie, O., Bildea, C.S., Van Der Last, V., Altimari, P. (2009). Design and control of integrated styrene - Aniline production plant. 8th World Congress of Chemical Engineering: Incorporating the 59th Canadian Chemical Engineering Conference and the 24th Interamerican Congress of Chemical Engineering, 4(5). DOI: 10.2202/1934-2659.1406
  29. Ghani, R., Ali Habibi, Yazdanbakhsh, A. (2022). Mathematical Modeling of Thermally Coupled Cyclohexane Dehydrogenation and Nitrobenzene Hydrogenation Reactors. Journal of Chemical and Petroleum Engineering, 56(2), 303–315. DOI: 10.22059/JCHPE.2022.337736.1380
  30. M Winter, B., Meys, R., Bardow, A. (2021). Towards aromatics from biomass: Prospective Life Cycle Assessment of bio-based aniline. Journal of Cleaner Production, 290. DOI: 10.1016/j.jclepro.2021.125818
  31. Javaid, A., Bildea, C.S. (2017). Design and Control of an Integrated Toluene-Aniline Production Plant a Preliminary Study. International Journal of Chemical Engineering and Applications, 8(4), 267–271. DOI: 10.18178/ijcea.2017.8.4.668
  32. Javaid, A., Bildea, C.S. (2018). Coupling exothermic and endothermic reactions—Application to combined aniline production / methyl-cyclohexane dehydrogenation. Asia-Pacific Journal of Chemical Engineering, 13(4), 1–12. DOI: 10.1002/apj.2210
  33. Ullmann, F. (2003). Ullmann’s Encyclopedia of Industrial Chemistry. In Ullmann’s Encyclopedia of Industrial Chemistry. DOI: 10.1002/14356007
  34. Andika, R., Chaniago, Y. (2013). Energy Efficiency Improvement of Aniline Separation in Methylene Diphenyl Diisocyanate Production. Indonesian Scholars Journal, 1(1), 82–86
  35. Bianco, N., Fragnito, A., Iasiello, M., Maria Mauro, G. (2021). A comprehensive approach for the multi-objective optimization of Heat Recovery Steam Generators to maximize cost-effectiveness and output power. Sustainable Energy Technologies and Assessments, 45(October 2020), 101162. DOI: 10.1016/j.seta.2021.101162
  36. Barker, G. (2017). The Engineer’s Guide to Plant Layout and Piping Design for the Oil and Gas Industries. The Engineer’s Guide to Plant Layout and Piping Design for the Oil and Gas Industries, 1–510. DOI: 10.1016/C2017-0-01720-2
  37. Shakya, S.R., Nakarmi, A.M., Prajapati, A., Pradhan, B.B., Rajbhandari, U.S., Rupakheti, M., Lawrence, M. G. (2023). Environmental, energy security, and energy equity (3E) benefits of net-zero emission strategy in a developing country: A case study of Nepal. Energy Reports, 9, 2359-2371, DOI: 10.1016/j.egyr.2023.01.055

Last update:

No citation recorded.

Last update:

No citation recorded.