
 
jcerp_20485_2025 Copyright © 2025, ISSN: 3032-7059 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Available online at website: https://journal.bcrec.id/index.php/jcerp 

Hybrid Approaches for Steam Demand Forecasting: Combining 

First Principles, Box and Jenkins, and Neural Network Models 
  

Davies Agommuoh1*, Antony Higginson1, Kevin Brooks1, Philip de Vaal2 
 

1Data Analytics and Numerics in Control Engineering Unit, Department of Chemical and Metallurgical Engineering, 

University of the Witwatersrand, Johannesburg, South Africa. 
2Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa. 

 

Journal of Chemical Engineering Research Progress, 2 (2) 2025, 232-245 

Abstract 

The pulp and paper industry relies heavily on batch sulphite digesters for chemical cellulose production, where steam 

is a critical utility – lack of steam prediction results in venting losses, increased costs, and a negative environmental 

impact. Accurate prediction of steam demand is therefore essential for optimising digester cooking cycles and resource 

allocation. This study aims to develop and compare predictive models for steam demand in batch pulp digesters using 

magnesium bisulphite cooking liquor. Three years of production data were pre-processed to extract digester 

temperature profiles and batch steam demands. Seven modelling approaches were evaluated: a mechanistic first-

principles energy balance model, Box–Jenkins ARIMA, two neural network models (LSTM and CNN), and three hybrid 

models combining first-principles with ARIMA, LSTM, and CNN. The hybrid frameworks employed dimensionless 

parameters from the mechanistic model as exogenous variables to compensate for unavailable process data. Model 

accuracy was assessed using RMSE and MAE metrics. The results show that hybrid models consistently outperformed 

their standalone counterparts. In particular, the hybrid first-principles–CNN model achieved the highest predictive 

accuracy, demonstrating the CNN’s ability to extract features and capture nonlinear temporal dependencies in steam 

demand. The hybrid first-principles–ARIMA model also surpassed both the standalone ARIMA and mechanistic 

models. Integrating mechanistic insights with data-driven methods significantly enhances prediction accuracy in 

complex batch processes. The findings highlight the value of hybrid modelling strategies for improving steam demand 

forecasting, with potential benefits for process optimisation, energy efficiency, and batch scheduling in the pulp and 

paper industry. 
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1.  Introduction 

The pulp and paper industry is a key player 

in global manufacturing, producing essential 

materials such as chemical cellulose (dissolving 

pulp), which is used in various products, ranging 

from paper to food additives [1]. This research 

addresses the challenge of predicting steam 

demand in batch pulp digesters used in the 

production of chemical cellulose, a key process in 

the pulp and paper industry. The production 

* Corresponding Author. 

Email: davieschuks.a@gmail.com (D. Agommuoh) 

involves cooking wood chips in digesters using 

magnesium bisulphite and steam. The efficient 

use of steam is crucial, but the complexity of the 

batch process, which includes sequential phases 

across multiple digesters, makes it difficult to 

predict steam requirements accurately. Excess 

steam generation leads to inefficient venting, 

which is both economically and environmentally 

detrimental. Accurate steam demand prediction 

would enable optimal resource allocation, reduce 

waste, and improve plant scheduling. 

To address this challenge, the study proposes 

the development of hybrid predictive models that 
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combine first-principles (also called mechanistic 

models) with data-driven approaches, including 

Box-Jenkins ARIMA (Autoregressive Integrated 

Moving Average) model and neural networks 

(Long Short-Term Memory (LSTM) and 

Convolutional Neural Network (CNN)). While 

first-principles models use foundational 

knowledge of physics and chemistry to fill data 

gaps, black-box models like neural networks are 

well-suited for handling the complex, poorly 

understood variables in steam demand prediction 

[2]. ARIMA models, which are adept at capturing 

linear dependencies in time series data, 

complement neural networks, which excel at non-

linear relationships [3].  

Predictive modelling in chemical engineering 

has traditionally relied on first-principles 

(mechanistic) models, which provide valuable 

physical insights but are often limited by missing 

process data and their inability to capture 

nonlinear dynamics [4,5]. Data-driven methods, 

particularly neural networks, have emerged as 

strong alternatives, consistently outperforming 

mechanistic models across domains such as 

electrodialysis [6], supercritical solubility [7], fuel 

cells [8], and catalytic cracking [9], owing to their 

ability to handle nonlinearities and reduce 

computational complexity. More recently, hybrid 

models that integrate mechanistic models with 

neural networks or statistical approaches such as 

ARIMA have shown superior performance, 

combining mechanistic interpretability with data-

driven flexibility. These hybrid approaches have 

improved forecasting in diverse applications, from 

wastewater treatment emissions [10] to time 

series problems such as water quality [11] and 

commodity prices [12], demonstrating their 

ability to capture both linear and nonlinear 

patterns. Despite these advances, the application 

of hybrid models remains limited in the pulp and 

paper sector. Most existing work has focused on 

predicting the Kappa number in kraft pulping 

processes, with little attention to batch sulphite 

digesters [13-15]. Furthermore, while recurrent 

neural networks (RNNs), particularly long short-

term memory (LSTM) variants, have been 

explored for fault diagnosis [16,17], convolutional 

neural networks (CNNs) remain largely 

underutilised in time series regression for process 

engineering, as their applications have 

predominantly focused on image recognition tasks 

[18]. 

The study evaluates eight models: 

standalone first-principles, ARIMA, and neural 

network models (LSTM & CNN), along with 

hybrid models that couple first-principles with 

ARIMA, LSTM, and CNN. The first-principles 

model is grounded in the energy balance equation 

and is parameterised using temperature profile 

data, solved via optimisation techniques. The 

hybrid models integrate these first-principles 

insights to provide exogenous variables for the 

ARIMA and neural network models. Initial 

findings suggest that the hybrid models 

outperform their standalone counterparts.  

There have been limited studies concerned 

with sulphite pulping processes, as most existing 

research has focused on kraft pulping and its well-

established reaction kinetics. Therefore, this 

research intends to advance predictive modeling 

in the pulp and paper sector by investigating 

sulphite batch digesters and introducing 

convolutional neural networks (CNNs) for time-

series regression, a technique rarely applied in 

process engineering. The novelty of this study lies 

in addressing the challenge of insufficient process 

data inherent in batch processes by rendering the 

governing energy balance equation into a 

dimensionless form, thereby generating key 

parameters that serve as exogenous inputs for 

data-driven models. This approach creates a form 

of “latent data” – parameters that cannot be 

directly measured in real time due to process 

complexity but can be inferred through hybrid 

modeling. The objectives of this research are: (i) to 

develop and implement a dimensionless first-

principles framework to derive these latent 

parameters; (ii) to integrate these parameters as 

exogenous variables in the hybrid models; and (iii) 

to evaluate and identify the most effective model 

structure for forecasting steam demand in batch 

sulphite digesters under conditions of limited 

process data and unobservable reaction variables. 

This approach provides a systematic pathway for 

modeling complex chemical systems where 

process measurements are sparse or incomplete. 

 

2. Methods 

In this study, model development relies 

heavily on plant data for regression and training, 

distinguishing mechanistic from black-box 

models. Historical data was extracted using 

OsiSoft PI in Microsoft Excel, creating a detailed 

three-year dataset with 10-minute interval 

readings. Key parameters include total steam 

consumption per batch, steam temperature, and 

the time required. Due to operational similarities, 

the analysis focuses on a single digester. Data 

preprocessing, conducted in Python, addressed 

noise, missing values, and outliers, improving the 

dataset's reliability. The data, covering the period 

from January 2018 to June 2021, was collected 

from a pulp mill in CSV format and included 

variables such as temperature, steam 

consumption, and timestamps. Given shutdowns 

and equipment malfunctions, only periods of 

normal operation were analysed, with a 

continuous data stretch from June 2020 to 

January 2021 selected for model training. The 
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dataset was divided into 462 batches using 

Python, defined by zero steam consumption before 

and after each batch, with each batch containing 

temperature and steam demand profiles. 

 

2.1  First-Principles Model 

The first-principles model begins with the 

energy balance for a batch digester in Equation 

(1) [19]. 

 

𝑑𝑇

𝑑𝑡
 = 

𝑄 ̇ − 𝑊𝑠̇  + (−𝛥𝐻𝑟𝑥)(−𝑟𝐴𝑉)

∑ 𝑁𝑖𝐶𝑃𝑖
           (1) 

 

Where, T is the temperature in Kelvin, t is time 

in seconds, 𝑄̇ is the rate of heat flow in J/s, 𝑊𝑠
̇  is 

the shaft work in J/s, 𝛥𝐻𝑟𝑥 is the heat of reaction 

in the digester in J/mol, −𝑟𝐴 is the rate of reaction 

of the limiting reagent, A (wood) in mol/L.s, V is 

the digester volume in litres, 𝑁𝑖 is the number of 

moles of species i in moles, 𝐶𝑃𝑖 is the specific heat 

of species i in J/mol.K. A schematic diagram of the 

batch digester illustrating the main reaction 

constituents (wood, liquor and pulp) is presented 

in Figure 1. 

The assumptions made in the development of 

the first principles models are listed below: (1). 

First-order reaction kinetics in the digester; (2). 

Wood is simplified to its major component, 

cellulose, and treated as the limiting reagent; (3). 

The heat capacity of the mixture is the weighted 

sum of the components, assuming negligible heat 

capacity change during the reaction (ΔCp ≈ 0); (4). 

∆Cp ≈ 0 as the reaction happens in the solid-liquid 

phase; (5). The reaction involves heat transfer, 

with no shaft work, and the system operates in 

batch mode. 

The denominator in Equation (1) can be 

expanded from the fourth assumption, ΔCp ≈ 0 

∑ 𝑁𝑖 𝐶𝑃𝑖 = ∑ 𝑁𝑖0 𝐶𝑃𝑖 = 𝑁𝑊0 ∑ 𝜃𝑖 𝐶𝑃𝑖 = 𝑁𝑊0𝐶𝑝𝑚       (2) 

 

In Equation (2), subscripts W and L represent the 

reagents wood and liquor, respectively, while 

subscript 0 represents the variables at the input 

stage. Subscript m refers to the property of the 

mixture.   

 

𝜃𝑖 =
𝑁𝑖

𝑁𝑖0
   [19] 

𝐶𝑝𝑚 =  ∑ 𝐶𝑝𝑖𝑦𝑖 =  𝐶𝑝𝑊𝑦𝑊 +  𝐶𝑃𝐿𝑦𝐿 +  𝐶𝑃𝑃𝑦𝑃  𝑛
𝑖=1       (3) 

 

Subscript P refers to the physical property of pulp, 

and 𝑦𝑖 is the mole fraction of i in the mixture. The 

reaction rate can also be expanded from the first 

assumption. 

 

𝑟𝐴 = −𝑘[𝐴] =  −𝑘[𝐴]0𝑒−𝑘𝑡             (4) 

 

𝑘 is the rate constant for a first-order reaction in 

1/second, [𝐴] is the concentration of species A. 

A stoichiometric table of the reaction in the 

digester determines the molar fractions, 𝑦𝑖 in 

terms of the conversion. The resulting expression 

for the heat capacity of the mixture was 

incorporated into 𝐶𝑃𝑖, and the first-order reaction 

rate was substituted for −𝑟𝐴. This resulted in 

Equation [5]. 

 

𝑑𝑇

𝑑𝑡
 = 

𝑄 ̇  + (−𝛥𝐻𝑟𝑥)(𝑁𝑤0𝑘𝑒−𝑘𝑡)

𝑁𝑊0(𝐶𝑃0+𝑦𝑊0𝑋(𝐶𝑃𝑃−𝐶𝑃𝑊))
              (5) 

 

Equation (5) was rendered dimensionless by 

introducing dimensionless variables for 

temperature (𝜃) and time (𝜏), resulting in 

Equation (6) with three dimensionless 

parameters σ, δ, ρ. 

 
𝑑𝜃

𝑑𝜏
 =  𝜎 +  𝛿𝜌                 (6) 

𝜃 =  
𝑇− 𝑇0

𝑇0
                 (7) 

𝜏 =  
𝑡

𝑡𝑏
                  (8) 

𝜎 =
(𝑄̇𝑡𝑏)

𝐶𝑃0𝑇0𝑁𝑊0
                (9) 

𝛿 =
𝐷𝑎(−𝛥𝐻𝑟𝑥)

𝐶𝑃0𝑇0
               (10) 

𝜌 = 𝑒−𝐷𝑎𝜏               (11) 

 

Equation (6) was integrated to produce Equation 

(12). 

 

𝜃 =  𝜎𝜏 − 𝐷𝑎𝛿(𝑒−𝐷𝑎𝜏 − 1)             (12) 

 

Essentially, Equation (5) presents a 

challenge due to the lack of measurable values for 

several terms (e.g., 𝑄̇, 𝛥𝐻𝑟𝑥, 𝐶𝑃𝑃, 𝑘 and others). To 

address this, the system was non-

dimensionalised, grouping the unmeasured terms 

into three new variables. This transformation Figure 1. Schematic diagram of a batch pulp 

digester. 
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reduced the number of unknowns from nine to 

three, leading to Equation (6). In Equation (6), the 

three dimensionless parameters, σ, δ, and ρ can be 

interpreted as follows: 

σ: Represents the efficiency of energy transfer 

from steam to the batch (energy required to 

increase the batch content by 1 kJ). 

δ: Represents the heat released or absorbed 

during the reaction relative to the reagent's heat 

content (efficiency of heat transfer in the 

reaction). 

ρ: A dimensionless factor representing the 

process decay over time, based on the Damkohler 

number. 

This non-dimensionalisation simplifies the 

system, making it more manageable for analysis. 

The final, dimensionless form of the model 

highlights the balance between external heat 

input and the heat generated by the reaction. 

Using cellulose as a proxy for wood simplifies the 

model’s complexity while maintaining accuracy in 

predicting steam demand in the digester. The 

plant data, which included temperature and 

steam consumption for each batch, was processed 

using Equations (7) and (8) to render the 

temperature and steam columns dimensionless. 

The dimensionless parameters in Equation (12) 

were then determined by fitting the data using 

the L-BFGS optimisation algorithm in SciPy. The 

L-BFGS-B algorithm is an efficient optimisation 

method that approximates function curvature 

with limited memory, making it ideal for large-

scale problems [20]. The first-principles model 

concentrates on the parameter σ, which 

represents the steam flow rate to the digester – a 

value we aim to forecast as outlined in Equation 

(9). A significant issue arises with the assumption 

that σ remains constant throughout a batch. In 

reality, σ fluctuates due to continuous changes in 

the heat flow rate, 𝑄̇. To address this variability 

and maintain σ as a constant for each batch, we 

utilise the average heat transfer across a batch. 

This approach simplifies the representation of σ 

as: 

𝜎 =  
(𝑄̇𝑡𝑏)

𝐶𝑃0𝑇0𝑁𝑊0
  =  

𝑄

𝐶𝑃0𝑇0𝑁𝑊0
               (13) 

𝑄 =  𝑚 ∗ 𝐶𝑝 ∗ ∆𝑇 =  𝑚𝑠 ∗  𝐻𝑓𝑔              (14) 

𝜎 =  
(𝑚𝑠 𝐻𝑓𝑔 )

𝐶𝑃0𝑇0𝑁𝑊0
                  (15) 

𝑚𝑠 =  
(𝜎𝐶𝑃0𝑇0𝑁𝑊0)

𝐻𝑓𝑔 
                 (16) 

The value of 𝑚𝑠 can be obtained from Equation 

(16), provided we can estimate the values of 

𝐶𝑃0, 𝑇0, 𝑁𝑊0 and 𝐻𝑓𝑔 . 

Another challenge with the first-principles 

model is its requirement for prior knowledge of 

the batch-specific parameter σ to forecast future 

steam flow rates. The parameter σ is derived from 

the batch's temperature profile, which is 

unavailable before the batch begins. 

Consequently, operators cannot determine σ in 

advance when predicting steam demand for a 

future batch, rendering Equation (16) unusable 

without this value. To address this issue, a black-

box model becomes essential to forecast future 

values of σ based on historical data. Since σ has no 

exogenous variables, a univariate model suffices. 

A Convolutional Neural Network (CNN) was 

found to be the most effective approach for 

predicting σ, and it was used to generate future 

values of σ for computing the mass of steam. 

 

2.2  Box and Jenkins’ ARIMA Model 

For over fifty years, Box-Jenkins ARIMA 

linear models have been widely used in time series 

forecasting. A nonseasonal time series is typically 

modelled as a combination of past values and 

errors, represented as ARIMA (p, d, q), where p 

and q refer to the orders of the autoregressive and 

moving average components. The general form is: 

 
𝑋𝑡 =  𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝑒𝑡−1 −

𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞               (17) 

 

Here, ϕ and θ are coefficients, 𝑋𝑡 and 𝜀𝑡 are the 

values of the modelled variable and residual at 

time t, respectively. The ARIMA model combines 

three components to capture patterns in time 

series data. The autoregressive (AR) terms 

incorporate the influence of past observations on 

the current value, while the moving average (MA) 

terms account for the impact of past forecast 

errors. Differencing (I) is applied to remove trends 

and ensure stationarity, a key requirement for 

effective modelling. Finally, the error term 

represents the random noise not explained by the 

model. Together, these components allow ARIMA 

to model both systematic dependencies and 

stochastic variations in the data [21]. The Box and 

Jenkins’ methodology for developing the ARIMA 

model is depicted in Figure 2. The methodology 

outlined in Figure 2 begins with importing the 

pre-processed data and checking the stationarity 

of the steam demand series.  

If the data is not stationary, first-order 

differencing is applied by calculating the 

difference between each observation and its 

preceding value, and this process is repeated until 

stationarity is achieved. Once the data is 

stationary, correlation plots are generated to 

identify significant lag values. These lag values 

guide the development of the ARIMA model, 

although Auto-ARIMA may also be used to 

automatically determine the optimal order of each 

model component. The batch temperature and 

steam data are utilised to develop the ARIMA 

model in a Python Jupyter notebook. To ensure 

reliable evaluation, 90% of the dataset is used for 

training the model, while the remaining 10% is 
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reserved for testing its ability to predict steam 

demand for future batches. 

 

2.3  Neural Network Models 

The two neural networks employed in this 

study, LSTM and CNN, were implemented using 

the Keras library in Python. The neural network 

models were trained using historical steam 

demand data to forecast future demand and 

tested multiple times across lags 1 to 6. Lag 1 

used the previous batch's steam demand on the 

test dataset, while lag 6 incorporated the last six 

batches' steam demand to predict the next batch. 

The hybrid first-principles models used an equal 

number of lagged exogenous variables (from the 

first principles model) and steam demand 

variables, also tested multiple times across six 

lags to find the most stable configuration. 

The models were trained using the stochastic 

gradient descent (SGD) backpropagation 

algorithm paired with the Adam optimiser, 

aiming to minimise the root mean squared error 

(RMSE) over 95 epochs. After 95 epochs, the 

RMSE remained stable across both the training 

and validation datasets, indicating consistent 

model performance. Empirical evidence also 

shows that the Adam optimiser accelerates 

training compared to other optimisers like 

RMSprop and SGD." 

 

2.3.1  LSTM model 

Deep neural networks, inspired by 

neurobiology, have become powerful tools for 

function approximation and pattern recognition. 

They are broadly categorised into feedforward 

networks, where data flows unidirectionally, and 

recurrent neural networks (RNNs), which 

incorporate feedback loops to retain information 

from previous inputs. Although RNNs can model 

sequential data, they are limited in capturing 

long-term dependencies. To overcome this, 

Hochreiter and Schmidhuber developed Long 

Short-Term Memory (LSTM) networks, which 

introduce memory cells regulated by forget, input, 

and output gates. These mechanisms allow 

LSTMs to preserve or discard information over 

extended sequences, enabling effective learning in 

tasks such as language modelling, prediction, and 

sequence analysis [22]. 

The LSTM model has a three-layer 

architecture with a depth of 3 and a width of 64. 

Increasing the layers or neurons adds complexity 

without improving performance, while removing a 

layer slightly degrades it. The LSTM architecture 

is illustrated in Figure 3. The LSTM model 

consists of an input layer, defined with a shape of 

(k, x), where k represents the number of lagged 

time steps and x denotes the number of 

forecasting variables for steam demand. This is 

followed by an LSTM layer containing 64 memory 

cells, which process the input sequences while 

managing the input, forget, and output gates, as 

well as the cell states. The output from the LSTM 

layer is passed through a fully connected dense 

layer with 8 units and ReLU activation, 

introducing non-linearity and transforming the 

features. Finally, a dense layer with a single unit 

and linear activation produces the final forecasted 

output. 

 

2.3.2 CNN model 

Convolutional Neural Networks (CNNs) are 

specialised neural networks that use convolution 

Figure 2. Box and Jenkins ARIMA model development methodology. 

Figure 3. LSTM model architecture development. 

methodology. 
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and pooling operations to extract deep features, 

making them highly effective for recognising 

patterns in complex data such as images, text, 

and video. Their architecture, as seen in Figure 4, 

is also well-suited for analysing seasonal time 

series with trends. 

In this study, CNNs, typically applied to 

image classification, are adapted for time series 

regression. The model begins with convolutional 

layers that capture time-lag correlations from 

past observations, effectively extracting 

predictive patterns from sequences of previous 

data points. These convolutional layers are 

followed by pooling layers, which merge similar 

features and reduce dimensionality by selecting 

the maximum value from neighbouring neurons, 

ensuring robustness to input shifts. Finally, fully 

connected layers summarise the extracted 

features and model both linear and nonlinear 

relationships, generating the final output for the 

time series forecast [23]. 

The CNN model employs a four-layer 

architecture designed to balance complexity and 

performance. The input layer is shaped as (kc, xc), 

where kc represents the number of lagged time 

steps and xc denotes the forecasting variables for 

steam demand. A Conv1D layer with 64 filters 

and a kernel size of 1, using ReLU activation, 

extracts features from the input sequence. The 

output is then flattened into a one-dimensional 

array, which is passed through a dense layer with 

8 neurons and ReLU activation to capture 

complex relationships. Finally, a dense layer with 

a single neuron and linear activation produces the 

forecasted output. This architecture effectively 

meets the objectives of the study without 

unnecessary complexity. 

 

2.4 Hybrid First Principles-ARIMA Models 

In the hybrid first-principles-ARIMA model, 

the first-principles approach calculates the 

dimensionless parameters, which are then 

incorporated as input variables alongside the 

plant's temperature data in the ARIMA model to 

forecast steam demand. This framework can be 

viewed as an ARIMAX model, where the 

dimensionless parameters serve as exogenous 

variables in the ARIMA structure. This dynamic 

is illustrated in Figure 5. 

 

2.5 Hybrid First Principles-Artificial Neural 

Network Models 

    In the hybrid first principles-neural network 

model, the dimensionless parameters estimated 

from the first principles models alongside the 

temperature variable are used as inputs for the 

LSTM or CNN models to predict steam demand. 

As a result, the hybrid first principles-LSTM 

model functions as a multivariate LSTM, and the 

hybrid first principles-CNN model operates as a 

multivariate CNN. Their structure parallels that 

of the hybrid first-principles–ARIMA model 

shown in Figure 5, with the ARIMA model 

component replaced by either an LSTM or CNN. 

 

2.6  Model Evaluation Metrics 

To evaluate the forecast accuracy of all 

models, two approaches were considered: 

analysing the entire test dataset versus specific 

subsets. Given the need to predict steam demand 

for upcoming batches, the focus was on the next 

batch. Evaluating the entire test set could skew 

the results due to error accumulation; therefore, 

accuracy was assessed over a five-batch forecast 

horizon using the Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE). This 

horizon strikes a balance between relevance and 

reduces error propagation. Training metrics were 

computed across the full dataset. 

The RMSE is the square root of the average 

of the squares of the differences between the 

predicted values and the actual values, as 

formulated in Equation (18). 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1              (18) 

  

The MAE is the average of the absolute 

differences between the predicted values and the 

Figure 4. CNN model architecture. 
Figure 5. Layout of the hybrid first principles-

ARIMA model. 
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actual values. Unlike RMSE, MAE uses the L1 

norm (|𝑦𝑖 −  𝑦̂𝑖|) to compute the average absolute 

error, making it less sensitive to outliers since 

deviations are not squared. This robustness 

makes MAE a more reliable performance metric 

for regression models when outliers are present 

[24]. 

 

MAE = 
1

𝑛
∑ |𝑦𝑖 −  𝑦̂𝑖|𝑛

𝑖=1              (19) 

 

3. Results and Discussion 

This section presents the results of applying 

the models to the test dataset. Training plots 

generated from the training data are provided as 

Supporting Information. This approach is taken 

because a model's performance is best evaluated 

on the test dataset, which consists of new, unseen 

data. 

 

3.1. First-Principles Model Performance 

Figure 6 compares the actual steam 

consumption (blue) with the predictions from the 

first principles model (red). The model 

significantly underestimates the actual steam 

demand and fails to capture the variability in the 

data, resulting in high error metrics: an RMSE of 

11.32 and an MAE of 11.23. This discrepancy 

arises from two main assumptions in the model. 

First, the assumption of a constant σ across a 

batch leads to an underestimation of the actual 

heat transfer Q, which in turn underestimates the 

steam mass 𝑚𝑠. Second, by considering the wood 

load as constant, the model cannot account for the 

actual variability in steam demand. As a result, 

the model predicts an average steam demand for 

every batch (about 16-19 tonnes), as illustrated in 

Figures 7 and 8, and also fails to account for 

fluctuations in the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To improve accuracy, a correction term 𝑚𝑐 

was introduced. The refined first-principles model 

incorporates mc to adjust the predicted steam 

demand, resulting in better alignment with the 

actual data. However, it still does not fully 

capture the inherent variability due to the 

constant wood load assumption. Resolving this 

would require precise data on wood and liquor 

loads for each batch. The modified equation 

becomes: 

 

𝜎 =  
((𝑚𝑠 + 𝑚𝑐) 𝐻𝑓𝑔 )

𝐶𝑃0𝑇0𝑁𝑊0
             (20) 

𝜎 =  
(𝑚𝑠 𝐻𝑓𝑔 )

𝐶𝑃0𝑇0𝑁𝑊0
+  

(𝑚𝑐 𝐻𝑓𝑔 )

𝐶𝑃0𝑇0𝑁𝑊0
             (21) 

 

This leads to an adjusted σ, denoted by σ+σ' in 

Equation (22). 

 
𝑑𝜃

𝑑𝜏
 =  𝜎 + 𝜎′ +  𝛿𝜌              (22) 

 

Figure 6. Comparison of first-principles model forecasts with actual data. 

Figure 7. Total steam consumption per minute for a 

typical batch. 
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Here, 𝑚𝑐 is calculated as the Mean Absolute Error 

(MAE) between the actual and forecasted average 

steam demand across the test dataset: 

 

𝑚𝑐 =  
| ∑ 𝑎𝑐𝑡𝑢𝑎𝑙,𝑚− ∑ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑚 |𝑛

𝑖=1  𝑛
𝑖=1

𝑛
           (23) 

 

Figure 9 displays the actual steam 

consumption (blue), the original model's 

prediction (red), and the adjusted prediction 

(orange). The adjusted model shows improved 

performance with an RMSE of 2.03 and an MAE 

of 1.63, indicating a better fit to the actual data. 

The refined first-principles model outperforms 

the original by incorporating Mean Absolute 

Error (MAE) for more accurate predictions within 

the actual data range. However, it still falls short 

in capturing data variability due to constant wood 

load. Addressing this requires precise data on 

both wood and liquor loads for each batch. 

 

3.2. Box and Jenkins’ ARIMA Model Performance 

The ARIMA model is developed by 

identifying the optimal combination of 

autoregressive, integrated, and moving average 

components. Since stationarity is a prerequisite, 

the analysis begins with testing and ensuring that 

the steam demand data is stationary. 

Autocorrelation (ACF) and partial autocorrelation 

(PACF) plots are then used to examine temporal 

dependencies and guide model specification. In 

addition, the auto-ARIMA function is employed to 

automatically determine the most suitable model 

parameters. This section presents the stationarity 

results, ACF and PACF analyses, and the final 

auto-ARIMA model specification, followed by its 

application to the steam demand data. 

 

3.2.1 Stationarity test 

The Augmented Dickey-Fuller (ADF) test, 

using Python's ‘adfuller’ method, confirms 

stationarity in the steam usage data with a p-

value of 0.011% – well below the 5% threshold – 

and a test statistic lower than the 5% critical 

value. This allows us to reject the null hypothesis 

and proceed with ARIMA modelling. 

 

3.2.2 ACF and PACF  

The autocorrelation (ACF) and partial 

autocorrelation (PACF) functions are visualised 

using Python's statsmodels graphics tools in 

Figures 10 and 11. Figure 10 shows moderate 

correlations between the current series value and 

its preceding values up to 10 lags, with the highest 

correlation at lag 1 being 0.35. This suggests that 

future values can be reasonably predicted based 

on the past 10 observations. Figure 11 indicates 

that the first three lags, especially the first, have 

a direct impact on the current value, highlighting 

the significant influence of recent data even after 

accounting for intermediate lags. However, the 

strength of these correlations remains moderate, 

capped at 0.35. The blue regions in both plots 

denote correlations insignificant at the 5% 

significance level (95% confidence). The ACF plot 

reveals significant autocorrelations up to lag 13, 

while the PACF plot shows significant 

autocorrelations up to lag 3. 

 

3.2.3 Optimal ARIMA configuration  

The optimal ARIMA model configuration was 

determined using ACF and PACF plots, 

suggesting an initial ARMA(3,10) model. 

However, to streamline the process, the 'auto-

ARIMA' function identified ARIMA(3,1,1) as the 

best fit, balancing model complexity. Despite the 

Figure 8. Comparison of first-principles model 

forecasts with the means of actual batches. Figure 9. Adjusted mechanistic model test forecast. 

Figure 10. ACF plot of steam demand. 
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 Coefficient p-Value 

ar.Lag1 0.1874 0.000 

ar.Lag2 0.0970 0.030 

ar.Lag3 0.0879 0.092 

ma.Lag1 -0.9726 0.000 

Log-Likelihood: -546.53 

AIC: 1103.07 

data's stationarity, a single order of differencing 

was employed, which improved the log-likelihood 

and Akaike Information Criteria, possibly due to 

seasonality in some data segments. Thus, 

ARIMA(3,1,1) is selected. 

 

3.2.4  ARIMA(3,1,1) model performance  

Figure 12 illustrates the forecasting 

performance of the ARIMA(3,1,1) model on the 

test dataset. As expected, the model performs 

better on the training data than on new test 

scenarios. The forecast appears as a near-straight 

line, failing to capture the variability in future 

steam values due to the model's simplicity and the 

low correlation between past and future steam 

demand. Incorporating process variables, such as 

wood loading and liquor loading, could enhance its 

performance. The test dataset forecast has an 

RMSE of 3.24 and an MAE of 2.90. The straight-

line forecast results from the model's integrated 

component of 1, which models the first-order 

difference in steam demand data. With limited 

information to explain changes in steam demand, 

the model predicts minimal variations after the 

initial points. Including exogenous variables 

could better capture the variation in steam 

demand. Table 1 presents the coefficients and p-

values of the ARIMA(3,1,1) model. Except for the 

lag 3 coefficient, all p-values exceed the 5% 

significance level, indicating that most 

coefficients are not individually significant, 

although the overall model fit is more important. 

The lag 3 coefficient, despite being insignificant, 

contributes to the model's goodness of fit. The MA 

component has a large negative coefficient 

compared to others, suggesting a compounding 

effect that negates positive changes in steam 

demand as more data points are included. This 

explains the slight variation at the beginning of 

the test forecasts and the subsequent straight-

line predictions as the forecasts extend further. 

 

3.3. Neural Network Model Performance 

The neural network models were evaluated 

using 6 different lags, with lag 3 proving to be the 

most stable and yielding the lowest error metrics. 

This result aligns with the PACF plot, which 

indicates that the preceding three values 

primarily influence steam demand. 

 

3.3.1 LSTM model performance 

The LSTM model performs similarly on both 

the training and test datasets, indicating no 

overfitting; however, its accuracy is suboptimal, 

with predictions deviating by approximately 2 

tonnes of steam. It struggles to predict steam 

demand variability due to relying solely on past 

steam data, resulting in an RMSE of 2.24 ± 0.062 

and an MAE of 2.06 ± 0.056 (uncertainties arise 

from the stochastic nature of neural networks). 

Despite this, its numerous parameters enable it to 

model steam variability better than a univariate 

statistical time series model. Incorporating 

exogenous variables could potentially improve its 

performance. Figure 13 displays the LSTM test 

forecasts. 

 

3.3.2 CNN model performance 

The CNN model achieved an RMSE of 2.00 ± 

0.02 and an MAE of 1.63 ± 0.023, exhibiting lower 

error metrics on the test dataset compared to the 

ARIMA and LSTM models, although it performed 

slightly worse on the training data. This 

difference arises because the LSTM model, with 

more parameters, fits the training data better but 

generalises less effectively. In contrast, the CNN's 

simpler structure facilitates generalisation and 

enables faster training, while effectively 

capturing short-term fluctuations. Figure 14 

displays the CNN test forecasts. 

Figure 11. PACF plot of steam demand. 

Figure 12. ARIMA(3,1,1) model forecast on test set 

vs. actual test data. 

Table 1. ARIMA(3,1,1) model coefficient. 
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 Coefficient p-Value 

ar.Lag1 0.1596 0.003 

ar.Lag2 0.0882 0.062 

ar.Lag3 0.0109 0.829 

ma.Lag1 -0.9808 0.000 

δ -0.0979 0.010 

Da -0.1264 0.006 

σ 0.5840 0.000 

Log-Likelihood: -546.53 

AIC: 1103.07 

3.4. Hybrid Model Performance 

3.4.1 Hybrid first principles-ARIMA model 

performance 

While the ARIMA model handles training 

data adequately, it produces constant predictions 

for the test data, indicating limitations due to 

missing batch-specific plant features. To improve 

accuracy, a hybrid first-principles ARIMA model 

incorporates derived dimensionless parameters 

(σ, δ, Da) as exogenous variables, allowing it to 

capture both historical demand and key 

influencing factors, enhancing predictive 

performance over a standard ARIMA model. The 

hybrid model, which incorporates exogenous 

variables, outperforms the ARIMA model without 

them. Figure 15 demonstrates that the hybrid 

model continues to surpass the ARIMA model in 

forecasting future steam demand, with an RMSE 

of 2.29 and an MAE of 1.93 – about 1 tonne of 

steam lower than the ARIMA model's errors. This 

consistent performance indicates that overfitting 

is unlikely. Table 2 presents the coefficients of the 

Hybrid ARIMA(3,1,1) model, which boasts a 

significantly higher log-likelihood and lower AIC 

values than the ARIMA model, indicating a better 

fit. Even without data on wood loading, wood type, 

and liquor loading at the start of the batch, the 

exogenous variables effectively capture steam 

demand patterns. These dimensionless variables, 

derived from the energy balance equation, provide 

valuable insights into the chemical and physical 

behaviours of the pulping process, enabling the 

model to make accurate predictions. 

 

3.4.2  Hybrid first principles-LSTM model 

performance 

The hybrid LSTM model was trained using 

historical steam demand data and three 

parameters (σ, δ, Da) from the first principles 

model, with equal lags for both steam demand and 

exogenous variables. This model exhibits 

significantly lower RMSE and MAE (0.95 ± 0.013 

and 0.83 ± 0.022) compared to the standalone 

LSTM, due to the inclusion of exogenous variables 

that enhance forecasting accuracy. As shown in 

Figure 16, the hybrid LSTM model captures steam 

demand variability more effectively than both the 

ARIMA and LSTM models, highlighting the 

potential of ANNs in accurately modelling steam 

demand. 

 

3.4.3  Hybrid first principles-CNN model 

performance 

Figure 17 indicates that it outperforms all 

other models in predicting both datasets. The 

hybrid CNN model has an RMSE of 0.89 ± 0.027 

Figure 13. LSTM model forecast on test set vs. 

actual test data. 

Figure 14. CNN model forecast on test set vs. 

actual test data. 

Figure 15. Hybrid ARIMA model forecast on test set 

vs. actual test data. 

Table 2. Hybrid first principles-ARIMA(3,1,1) 

model coefficients. 
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Model RMSE MAE DOF 

First Principles 2.03 1.63 3 

ARIMA 3.24 2.90 5 

Hybrid ARIMA 2.29 1.93 8 

LSTM 2.24 ± 0.062 2.06 ± 0.056 17425 

Hybrid LSTM 0.95 ± 0.013 0.83 ± 0.022 17681 

CNN 2.00 ± 0.020 1.63 ± 0.023 1681 

Hybrid CNN 0.89 ± 0.027 0.71 ± 0.024 1745 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and an MSE of 0.71±0.024. This superior 

performance is due to the Hybrid CNN model's 

ability to create additional features through 

convolution operations. Alongside the 

dimensionless parameters derived from the first-

principles dataset, the Hybrid CNN model utilises 

convolutional kernels to generate additional 

features that effectively capture local patterns 

within the data. 

 

3.5. Comparative Analysis of the Performance of 

all Models 

Table 3 presents the RMSE, MAE, and 

degrees of freedom (DOF) for each model, 

facilitating the identification of the simplest and 

most effective model by comparing their 

complexity. Figure 18 visualises these results, 

showing that hybrid neural network models 

perform best, while the ARIMA model performs 

the worst. The ARIMA model underperforms due 

to a low autocorrelation coefficient (below 0.5) 

between steam demand and its past values, 

indicating significant influence from external 

factors not captured by ARIMA's linear, temporal 

approach. Incorporating exogenous variables 

enhances performance in the hybrid ARIMA 

model. The first-principles model, based on 

fundamental physical and chemical processes of 

digester reactions, is expected to outperform time-

series models, such as Box and Jenkins. However, 

its predictive accuracy is limited by the absence of 

crucial initial variables such as wood and liquor 

content and the actual heat capacity of the 

digester content. Despite these limitations, it still 

Figure 15. Hybrid ARIMA model forecast on test 

set vs. actual test data. 

Figure 16. Hybrid LSTM model forecast on test set 

vs. actual test data. 

Figure 17. Hybrid CNN model forecast on test set 

vs. actual test data. Figure 18. RMSE and MAE values for all models. 

Table 3. Error metrics and degrees of freedom of the models. 
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surpasses the traditional time series models. 

Complex neural network models, such as LSTM 

and CNN, have high degrees of freedom, with 

LSTM being the most intricate. While they 

perform comparably, their reliance solely on 

steam demand data makes them less optimal 

than their hybrid versions. Nevertheless, their 

nonlinear complexity only allows them to perform 

on par with the hybrid ARIMA model. 

Among neural networks, CNN generally 

outperforms LSTM while using fewer parameters 

due to its utilisation of shared weights. This 

means that as the number of time steps increases, 

the parameter count in CNN models remains 

constant if the number of filters stays the same. 

Hybrid models like the hybrid LSTM and hybrid 

CNN significantly outperform their standalone 

counterparts by incorporating exogenous 

variables that better explain steam demand 

variations. Therefore, the hybrid first principles-

CNN model is the most effective structure for 

modelling steam demand. The hybrid first 

principles-ARIMA model performs significantly 

better than the standard ARIMA. Even without 

detailed process data from the mill, the 

dimensionless first-principles model generated 

features that neural networks used to accurately 

model steam demand. 

    The findings of this study align with 

previous applications of hybrid mechanistic–data-

driven models in chemical engineering, as 

outlined in the Introduction. Similar trends are 

observed in the pulp and paper industry, where 

most research has focused on kappa number 

prediction and other kraft-specific variables. For 

example, a hybrid kraft digester model coupling 

kinetics and diffusion with ANN achieved more 

accurate delignification and kappa number 

predictions than either approach individually 

[25]. Even within control theory, hybridisation 

has proven valuable, with a Koopman MPC 

framework enhancing regulation of Kappa 

number and fibre properties under feed 

fluctuations relative to single-model controllers 

[26]. Distinct from these studies, which 

emphasise digester chemistry or process control, 

our work extends hybrid modelling to steam 

demand forecasting – an equally critical but 

underexplored aspect of pulp mill operations. 

Consistent with prior findings, our hybrid 

mechanistic–data-driven models outperformed 

standalone mechanistic, ARIMA, and neural 

network models, highlighting the effectiveness of 

hybrid strategies for improving both accuracy and 

reliability in complex industrial processes. 

4. Conclusions 

This study addressed the challenge of 

predicting steam demand in batch sulphite 

digesters by developing and comparing first-

principles, ARIMA, neural network, and hybrid 

models. The hybrid frameworks, which 

incorporated dimensionless parameters from the 

mechanistic model as exogenous variables, 

consistently outperformed standalone models. 

Among them, the hybrid first-principles–CNN 

model achieved the highest predictive accuracy, 

followed by the hybrid LSTM and ARIMA models. 

These results confirm that integrating 

mechanistic insights with data-driven techniques 

provides a more reliable approach for forecasting 

steam demand in complex batch processes. Future 

research should explore incorporating higher-

order reaction kinetics to more accurately capture 

underlying chemical dynamics and investigate 

alternative time series methods, such as ARDL or 

Kalman filtering, to address non-stationary data. 

In addition, extending neural network 

architectures to advanced models like 

transformers could further improve predictive 

performance. 
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