Optimization Photodegradation of Methylene Blue Dye using Bentonite/PDA/Fe$_3$O$_4$@CuO Composite by Response Surface Methodology

Fahma Riyanti1, Poedji Loekitowati Hariani2,3,*, H. Hasanudin3, Addy Rachmat2,3, Widia Purwaningrum1

1Doctoral Program of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia.
2Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia.
3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia.

Received: 19th February 2024; Revised: 18th May 2024; Accepted: 21st May 2024
Available online: 11th June 2024; Published regularly: August 2024

Abstract

This study aims to synthesize bentonite/PDA/Fe$_3$O$_4$@CuO composites as a catalyst for the photodegradation of Methylene blue dye. Composite characterization involves X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) with X-ray Energy Dispersion Spectrometry (EDS), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Vibrating Sample Magnetometer (VSM). Response Surface Methodology (RSM) employs Central Composite Design (CCD) to optimize photodegradation by varying dye concentration, irradiation time, and catalyst dose. The bentonite/PDA/Fe$_3$O$_4$@CuO composites exhibit a saturation magnetization value of 54.82 emu/g and a band gap of 2.1 eV. The optimization revealed that concentration and dose significantly impact the photodegradation efficiency. A quadratic model is suitable for modeling the photodegradation of Methylene blue dye using bentonite/PDA/Fe$_3$O$_4$@CuO composites, as determined by analysis of variance (ANOVA). The optimal conditions for achieving maximum photodegradation efficiency were identified as a dye concentration of 10 mg/L, an exposure time of 90 min, and a catalyst dose of 1.67 g/L. Under these parameters, the photodegradation process exhibited a remarkable efficiency of 100%. The Bentonite/PDA/Fe$_3$O$_4$@CuO composites exhibited strong stability, efficiency, and recyclability. After six photodegradation cycles, there was a 5.18% decrease in photodegradation efficiency.

Keywords: bentonite/PDA/Fe$_3$O$_4$@CuO; photodegradation; Methylene blue dye; RSM optimization; quadratic model

Permalink/DOI: https://doi.org/10.9767/bcrc.20132

1. Introduction

Toxic liquid waste containing dye chemicals threatens our natural ecosystem significantly. Most dye waste is non-biodegradable, carcinogenic, and poses significant risks to humans and aquatic animals [1]. Various industries, including textile, chemical, printing, cosmetics, photography, paper, plastic, and food, generate waste containing hazardous dyes [2,3].

Methylene blue dye is a commonly utilized dye in various industries. The molecular formula of methylene blue dye is C$_{16}$H$_{18}$ClN$_3$S. It is a cationic dye containing an aromatic amine group that poses a challenge due to its resistance to degradation [4,5].

Several techniques have been employed to decrease the level of Methylene blue dye prior to its release into the environment, such as adsorption [6], coagulation-flocculation [7], electrolysis [8], reverse osmosis [9], and advanced oxidation process [10].
process (AOP) shows excellent potential for treating waste with dyes [11,12]. Heterogeneous photocatalysis is an effective AOP technique for degrading dyes. Photocatalysis semiconductors are efficient and environmentally friendly, a promising technology for eliminating refractory pollutants from water [13]. Hydroperoxyl radicals, hydroxyl radicals, and superoxide ions contribute to the degradation of dyes into smaller, non-toxic molecules such as H$_2$O and CO$_2$ [14,15].

This study utilizes a composite material of metal oxide (MO-n) and bentonite. Metal oxides (MO-n), such as Copper oxide (CuO), are utilized in photocatalytic research due to their biocompatibility, stability, and cost-effectiveness [16]. CuO is a p-type transition metal semiconductor with a band gap energy of 1.2–1.5 eV, that can be used in the visible region [17]. However, CuO as a catalyst has a weakness, which lies in its susceptibility to agglomeration due to its small size, diminishing the efficiency of photocatalysis.

Bentonite is a type of clay known for its stability and large surface area, making it suitable for use as an adsorbent or catalyst [18]. Attaching Fe$_3$O$_4$ particles to bentonite enhances degradation efficiency and allows for easy separation of the catalyst from the solution using a magnet [19]. Fe$_3$O$_4$ is a non-toxic, biocompatible material with robust magnetic properties [20]. To ensure proper dispersion of the active catalyst species on a solid support, the surface must be altered using organic ligands like Polydopamine (PDA) [21]. PDA contains various functional groups, such as catechol and amino, which can bind strongly to organic and inorganic materials through hydrogen bonds [22]. For example, PDA can adsorb Pb metal ions and Methylene blue dye [23,24].

CuO has long been employed as a catalyst to enhance its performance, combined with other materials like bentonite/PDA/Fe$_3$O$_4$ to enhance the holes and photo-generated, separate electrons and prevent agglomeration. The composite is magnetic, making it easier to separate and regenerate. This research aims to synthesize a bentonite/PDA/Fe$_3$O$_4$@CuO composite. Fe$_3$O$_4$ as the bentonite pillar and imparts magnetic properties, with PDA serving as a layer and where CuO acts as a catalyst distributed on the bentonite/PDA/Fe$_3$O$_4$ surface [21]. A statistical approach was used to optimize the photodegradation process using Response Surface Methodology (RSM). The RSM is a reliable statistical technique for modeling to optimize and understand catalyst performance and verify the studied variables [25,26]. The photocatalytic activity of the composite towards Methylene blue dye includes the variables of dye concentration, contact time, and catalyst dose.

2. Materials and Methods

2.1 Material

Chemicals include FeCl$_3$.6H$_2$O, FeSO$_4$.7H$_2$O, NaOH, ethanol, Cu(NO$_3$)$_2$, dopamine (DA), Tris Chloride (TrisCl), and Methylene blue dye all sourced from Merck, Germany. Bentonite clay originates from Jambi province.

2.2 Bentonite Preparation

Natural bentonite was crushed and then screened through a 200-mesh sieve. The bentonite was then immersed in a 1% hydrochloric acid solution (bentonite to HCl ratio of 1:2) for 4 h. Bentonite was rinsed with distilled water until the pH was neutral and then dried in an oven at 105 °C for 6 h [19].

2.3 Synthesis of Bentonite/PDA

The bentonite/PDA synthesis followed the method Ain et al. [21]. A total of 5 g of prepared bentonite was added to 200 mL of distilled water and stirred for 30 min with a magnetic stirrer. Subsequently, 0.2 g of DA and 0.4 g of TrisCl were added, and stirring was maintained for 24 h. The bentonite/PDA composite was isolated from the solution through filtration and multiple washes with distilled water and ethanol. The Bentonite/PDA mixture was then dehydrated at 60 °C in an oven for 3 h.

2.4 Synthesis of Bentonite/PDA/Fe$_3$O$_4$

A total of 2 g of bentonite/PDA was added to 200 mL of a solution containing 0.745 g of FeCl$_3$.6H$_2$O and 1.165 g of FeSO$_4$.7H$_2$O. The solution was stirred as NaOH with a concentration of 1 M was added slowly while nitrogen gas was flowing. The stirring continued for approximately 1 h until the solution reached a pH of ±11. The precipitate was rinsed with distilled water until it reached a neutral pH, then dried in an oven at 105 °C for 2 h.

2.5 Synthesis of Bentonite/PDA/Fe$_3$O$_4$@CuO

10 mL of a 0.02 M Cu(NO$_3$)$_2$ solution was treated with 1.16 g of bentonite/PDA/Fe$_3$O$_4$ composite. After 120 min of sonication, the mixture was thoroughly cleaned with distilled water and ethanol to bring its pH to neutral. The obtained precipitate was then dried at 70 °C for 2 h and subsequently calcined at 400 °C for 60 min.

2.6 Characterizations

X-ray Diffraction (XRD) analysis was conducted using a Cu-Kα radiation source (λ = 0.15418 Å) with a PANalytical XPERT PRO instrument, scanning in the 10 to 90° range to determine phase type and crystal size. Band gap
values were determined through UV-Vis Diffuse Reflectance Spectrometry (UV-Vis DRS) using a Hitachi U-2900 instrument. Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDS) with a JSM-6510 LA instrument was employed for morphological and elemental composition analyses. Magnetic properties were assessed using a Vibration Sample Magnetometer (VSM Oxford Type 1.2 H). Fourier Transform Infrared (FTIR) analysis of functional groups before and after photodegradation was performed using a Thermo Scientific Nicolet iS-10 instrument, with KBr pellets for sample presentation, in the 400-4000 cm\(^{-1}\) wave number range. UV-Vis Spectrophotometry (Orion Aquamate 8000) was utilized to measure the absorbance of Methylene blue dye.

2.7 Photocatalytic Activity Optimization

The photodegradation process for Methylene blue dye was optimized using RSM. The CCD model, implemented with Design-Expert software (Version 13), facilitated the experimental design. A total of 20 experiments were conducted, incorporating independent variables such as dye concentration, irradiation time, and catalyst dose. Visible light (60 watts, Philips lamps) was the radiation source. After completing all experiments, the appropriate model was analyzed to characterize the photodegradation of Methylene blue dye employing the bentonite/Fe\(_3\)O\(_4\)/PDA@CuO composite.

The catalyst undergoes regeneration in six cycles. In each regeneration step, the catalyst was extracted from the solution employing a permanent magnet, followed by a thorough washing process with distilled water and ethanol [27]. Subsequently, the catalyst is subjected to drying in an oven for 2 h at a temperature of 70 °C. The photodegradation efficiency was calculated from the decrease of dyes concentration measured by UV-Visible Spectrophotometer after irradiation treatment.

3. Results and Discussion

3.1 XRD Analysis

Figure 1 illustrates the spectra of bentonite, bentonite/PDA, bentonite/Fe\(_3\)O\(_4\)/PDA, and bentonite/Fe\(_3\)O\(_4\)/PDA@CuO. The major peaks indicating the presence of bentonite at 2\(\theta\) = 20.22°, 21.26°, 27.15°, and 50.18°, aligning with the findings of Wan et al. [28], reported peaks at 2\(\theta\) = 20.4°, 21.3°, 27.2°, and 50.53°. The spectra of bentonite/PDA exhibit similarities to those of bentonite but with reduced intensity, attributed to the introduction of PDA, an organic compound [29]. The spectra of bentonite/Fe\(_3\)O\(_4\)/PDA exhibit diminished intensity compared to bentonite and bentonite/PDA, featuring characteristic Fe\(_3\)O\(_4\) peaks at 30.25°, 35.62°, 43.46°, 54.21°, 57.43°, and 63.18° corresponding to JCPDS card No. 75-0449.

![Figure 1. XRD pattern of (a) bentonite, (b) bentonite/PDA, (c) bentonite/Fe\(_3\)O\(_4\)/PDA, and (d) bentonite/Fe\(_3\)O\(_4\)/PDA@CuO.](image)

![Figure 2. Spectra of (a) UV-Vis DRS and (b) Band gap energies of bentonite and bentonite/Fe\(_3\)O\(_4\)/PDA@CuO.](image)
In bentonite/Fe$_3$O$_4$/PDA@CuO, the presence of CuO is evident through sharp and intense peaks at $2\theta = 32.44^\circ$, 35.54°, 38.66°, 48.83°, 53.66°, 58.24°, 61.59°, 66.30°, and 68.14°, associated with crystal planes (110), (002), (111), (112), (020), (202), (113), and (220), corresponding to JCPDS card No. 89-5895. Gomaa et al. [30] reported on his work in accordance with JCPDS Card No. 89-5895. The average crystal sizes, determined using the Debye Scherrer equation, were 23.6, 25.8, 27.4, and 31.4 nm for bentonite, bentonite/PDA, bentonite/Fe$_3$O$_4$/PDA, and bentonite/Fe$_3$O$_4$/PDA@CuO, respectively.

3.2 UV-DRS Analysis

UV-DRS spectroscopy assessed the band gap energy of both bentonite and the bentonite/Fe$_3$O$_4$/PDA@CuO composites. In Figure 2(a), the UV-DRS spectrum of bentonite exhibits a distinct absorption peak at approximately 263 nm, whereas the bentonite/Fe$_3$O$_4$/PDA@CuO composite displays a broader peak spanning 400-500 nm. This absorption is primarily influenced by the presence of Fe$_3$O$_4$ and CuO in the visible region [31]. CuO, being a direct band semiconductor, efficiently absorbs light within the 400-580 nm wavelength range [32]. The band gap energy is the amount of energy necessary to move electrons from the valence band to the conduction band in a semiconductor material. Calculating the estimated band gap energy value involves the application of the following equation [33,34].

\[(a\nu)^n = A(h\nu - E_g)\]

(1)

The symbol α represents the absorption coefficient, $h\nu$ denotes photon energy, and n characterizes the type of transition (1/2 or 2, representing direct and indirect transitions, respectively). A represents a constant and E_g stands for the band gap energy. The determination of E_g involves plotting of $(a\nu)^2$ against $h\nu$. The linear region indicating an indirect band gap.

The Tauc function plots reveal band gap energies of 4.1 eV and 2.1 eV for bentonite and bentonite/Fe$_3$O$_4$/PDA@CuO composites, respectively (Figure 2(b)). The band gap value is obtained from the intersection point of the tangent line to the horizontal axis [35]. This discrepancy

![Figure 3. Morfologi (a) bentonite, (b) bentonite/PDA, (c) bentonite/Fe$_3$O$_4$/PDA dan (d) bentonite/Fe$_3$O$_4$/PDA@CuO.](image-url)
in the energy band gap is attributed to the presence of a p-n heterojunction on the catalyst. Furthermore, the incorporation of Fe\textsubscript{3}O\textsubscript{4} and CuO into the composite results in a reduction of the energy band gap. Additionally, introducing Fe\textsubscript{3}O\textsubscript{4} and CuO facilitates enhanced transfer and separation of electron-hole pairs, leading to improved photocatalytic activity [31].

3.3 SEM-EDS Analysis

The surface characteristics were observed via SEM, while the elemental composition was analyzed using EDS assessment. Figure 3 depicts the structural features of bentonite, bentonite/PDA, bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA, and bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO. Jiang et al. [36] reported that bentonite showcases a layered configuration. Both bentonite/PDA and bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA show heterogeneous surfaces. The bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA surface appears denser and there are small chunks between the layers indicating the presence of Fe\textsubscript{3}O\textsubscript{4}. The bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO composite manifests minute, dispersed grains on its surface, indicating CuO dispersed on the surface of bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA.

Table 1 presents the elemental composition of bentonite, bentonite/PDA, bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA, and bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO. Bentonite exhibits a composition containing various elements, including C, O, Na, Al, Fe, and K. Upon introducing PDA, there is a discernible increase in the carbon percentage. The percentage of Fe is increased when Fe\textsubscript{3}O\textsubscript{4} is added to bentonite/PDA. The amount of Cu in the bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO composite is 16 wt.%, indicating that the composite contains CuO.

3.4 VSM Analysis

The examination of magnetic properties through hysteresis loop curves is presented in Figure 4 for bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA and bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO. Bentonite and bentonite/PDA exhibit no magnetic characteristics. Notably, the magnetic properties of bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA surpass those of bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO, with a saturation magnetization value of 63.27 emu/g compared to 54.82 emu/g. The introduction of nonmagnetic components leads to a reduction in magnetic properties [37]. Similar trends are observed in other studies, where Fe\textsubscript{3}O\textsubscript{4}/PDA demonstrates a higher saturation magnetization than MnO\textsubscript{2}/Fe\textsubscript{3}O\textsubscript{4} [38]. The S-shaped loop on the curve indicates superparamagnetic behavior [21]. The magnetic properties of bentonite/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO enable the rapid separation of the photocatalyst from the solution post-catalysis using a permanent magnet without filtration.

3.5 Photodegradation of Methylene Blue Dye

In the process of photodegradation involving Methylene blue dye and the bentonite/PDA/Fe\textsubscript{3}O\textsubscript{4}/PDA@CuO composite, various parameters, including concentration (mg/L), time irradiation (min), and dose (g/L), were systematically examined. The optimization procedure was carried out using RSM with CCD models. A total of 20 randomized experiments were designed to acquire both experimental and predicted photodegradation efficiency, as outlined in Table 2. Discrepancies between experimental and predicted data serve as a means to assess the precision and validity of the RSM model.
The optimal conditions for the photodegradation process were determined to be a Methylene blue dye concentration of 10 mg/L, an irradiation time of 10 min, and a composite dose of 1.67 g/L. The photodegradation efficiency under these conditions was 99.76%, while the predicted value was 99.76%. The difference of only 0.24% attests to the concurrence between the experimental and predicted data, affirming the accuracy of the RSM model.

Figure 5 displays the comparison between predicted and actual photodegradation efficiency. The average residual value, standing at 0.685 and in proximity to zero, indicates normal scattering.

This observation leads to the conclusion that the residual achieved is within the expected ranges, affirming the suitability of the proposed model [39].

The photodegradation process of Methylene blue dye encompasses the following phases. Initially, the bentonite/PDA/Fe_3O_4@CuO catalyst absorbs radiation energy, facilitating the excitation of electrons from the valence band (VB) to the conduction band (CB). This transition results in the generation of holes (h^+), which subsequently interact with H_2O, leading to the formation of •OH and O_2^− species. These species actively contribute to the degradation of the dye, yielding non-harmful byproducts like H_2O and CO_2 [27,40]. Equations (2) - (8) show the photodegradation mechanism of Methylene blue dye using bentonite/PDA/Fe_3O_4@CuO [40,41].

\[
\text{Bentonite/ Fe}_3\text{O}_4/ \text{PDA@CuO} + h_\nu \rightarrow \text{Bentonite/ Fe}_3\text{O}_4/ \text{PDA@CuO} \ (e_\text{cb} + h_\nu) \quad (2)
\]

\[
h_\nu^+ + \text{OH}^- \rightarrow \text{OH} \quad (3)
\]

\[
e_\text{cb} + \text{O}_2 \rightarrow \text{O}_2^-. \quad (4)
\]

\[
\text{O}_2^- + \text{H}_2\text{O} \rightarrow \text{HO}_2^- + \text{OH}^- \quad (5)
\]

\[
\text{HO}_2^- + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (6)
\]

\[
\text{H}_2\text{O}_2 + \text{O}_2^- \rightarrow \text{OH}^- + \text{HO}_2^- + \text{O}_2 \quad (7)
\]

\[
\text{OH}^- + \text{O}_2^- + \text{MB} \rightarrow \text{Degradation product} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{other product} \quad (8)
\]

Table 2. Experimental and predicted photodegradation of Methylene blue dye utilizing bentonite/PDA/Fe_3O_4@CuO

<table>
<thead>
<tr>
<th>Run</th>
<th>Concentration (mg/L)</th>
<th>Time (min)</th>
<th>Dose (g/L)</th>
<th>Photodegradation efficiency (%)</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Experimental</td>
<td>Predicted</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>0.33</td>
<td>82.49</td>
<td>82.62</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>50</td>
<td>0.33</td>
<td>76.36</td>
<td>76.38</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>90</td>
<td>0.33</td>
<td>84.47</td>
<td>84.16</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>90</td>
<td>0.33</td>
<td>76.37</td>
<td>75.97</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>90</td>
<td>1</td>
<td>84.89</td>
<td>85.66</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>80.71</td>
<td>79.73</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>83.18</td>
<td>83.70</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>90</td>
<td>1.67</td>
<td>100</td>
<td>99.76</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>84.89</td>
<td>83.70</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>50</td>
<td>1.67</td>
<td>90.51</td>
<td>89.21</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>83.73</td>
<td>83.70</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>10</td>
<td>1.67</td>
<td>97.85</td>
<td>98.58</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>10</td>
<td>1.67</td>
<td>83.73</td>
<td>84.36</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>50</td>
<td>1</td>
<td>91.23</td>
<td>90.93</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>83.34</td>
<td>83.70</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>86.29</td>
<td>84.24</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>90</td>
<td>1.67</td>
<td>85.45</td>
<td>85.64</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>10</td>
<td>0.33</td>
<td>73.76</td>
<td>74.32</td>
</tr>
<tr>
<td>19</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>83.47</td>
<td>83.70</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>50</td>
<td>1</td>
<td>81.03</td>
<td>83.70</td>
</tr>
</tbody>
</table>
Notably, the PDA component, enriched with quinone rings, is pivotal in efficiently transporting electrons and holes between donors and acceptors. Furthermore, the catechol group within PDA serves as a two-electron gate, significantly enhancing electron transfer efficiency [42,43]. Figure 6 explains the photodegradation mechanism of Methylene blue dye.

The photodegradation of Methylene blue dye produces water (H\(_2\)O), carbon dioxide (CO\(_2\)), and other products. These other products could be non-toxic organic acids like acetic acid and oxalic acid, as well as mineralized inorganic substances such as nitrates, sulfites, and sulfates [44]. Other studies indicate that 40% of methylene blue dye undergoes mineralization, while the remaining portion is oxidized into smaller molecular substances like propionic acid and malonic acid [45].

Through the ANOVA analysis, we have examined the interplay of various variables within the photodegradation process. As per the following equation, the quadratic model is the preferred model for representing this degradation process.

\[
Y = 81.82495 - 0.415715A - 0.058054B
+ 17.07909C + 0.00031AB - 0.110448AC
- 0.003358BC + 0.004075A^2
+ 0.000781B^2 - 2.01604C^2
\]

(9)

A, B, and C correspond to concentration, irradiation time, and dose in the investigation of photodegradation. The suitability of the quadratic model was assessed through ANOVA, including F-value, P-value, and Lack of Fit. A quadratic model was also produced for the photodegradation of Methylene blue utilizing g-C\(_3\)N\(_4\) [46] and Zn-La oxide [47]. The varying p values suggest that not all variables play a significant role in photodegradation. Table 3 displays the ANOVA results for the quadratic model analysis of methylene blue dye photodegradation.

With a model F-value of 47.09, it is evident that the model holds significance. The likelihood of the F-value occurring due to noise is a mere 0.01%, reinforcing the model's robustness. A P-value below 0.05 further confirms the model's significance. The variables that exhibit a significant influence based on their P-values are concentration and dose, while time does not demonstrate a significant impact on the photodegradation process of methylene blue dye. Increasing the dye concentration and catalyst doses indeed impacts the extent of degradation. However, elevated dye concentrations can hinder...
light penetration onto the catalyst, limiting the generation of active species necessary for dye degradation. Similarly, at higher catalyst doses, while the number of active species may increase, turbidity can develop, impeding light penetration. Consequently, optimizing photodegradation variables becomes crucial to strike a balance and achieve optimal degradation efficiency [48].

![Figure 7](image_url)

Figure 7. Response surface and contour plots of the effect a) times and concentration, b) doses and concentration, and c) doses and times.
This aligns with related research, such as the photodegradation of Rhodamine B dye using Bi-metal doped TiO$_2$ [49] and the photodegradation of Methyl orange dye using cellulose/zinc oxide hybrid air gel [50], both employing the quadratic model. The lack of fit F-value of 1.29 implies the lack of fit is not significant relative to the pure error. There is a 39.18% change that a lack of fit F-value could occur due to noise. A non-significant lack of fit is good, as it indicates that the model fits the data well.

The obtained linear regression coefficient (R^2) value is 0.9769, closely approaching 1. This proximity suggests a strong correspondence between the experimental and predicted responses. The marginal difference between the adjusted R^2 (0.9562) and predicted R^2 (0.9004), both being less than 0.2, signifies the capability of the model [51]. The optimal conditions zone is determined by assessing interaction variations as a response function, specifically in photodegradation efficiency. Figure 7 illustrates the 3D surface response and contour plots portraying the photodegradation efficiency of Methylene blue dye using Bentonite/Fe$_3$O$_4$/PDA@CuO composites, with dye concentration, irradiation time, and dose variations.

The optimum conditions for photodegradation were obtained at the Methylene blue dye concentration (10 mg/L), dose (1.67 g/L), and irradiation time (90 min). Concentration has a negative effect on photodegradation efficiency. As the concentration of Methylene blue dye increases, the photodegradation efficiency decreases. Increasing the dye concentration blocks radiation energy from reaching the catalyst [52]. Increasing the dose of the bentonite/PDA/Fe$_3$O$_4$@CuO composite enhances photodegradation efficiency because more catalyst generates a greater amount of •OH and O_2^- to radicals to break down the dye.

Table 4 is a comparison of catalysts for photodegradation of Methylene blue dye. Even though the dose used in this research is quite large, compared to other researchers. However, the photodegradation using this composite is an efficient process because the composite can be separated from the solution quickly after the degradation process using an external magnet without filtering. It can be seen that Bentonite/PDA/Fe$_3$O$_4$@CuO composite has greater photodegradation efficiency for Methylene blue dye than some catalysts.

3.6 Photocatalyst Recyclability

The bentonite/PDA/Fe$_3$O$_4$@CuO regeneration process was conducted through six regeneration cycles. As depicted in Figure 8, the degradation efficiency experiences only a marginal reduction of 5.18% over the six regeneration cycles, affirming the catalyst’s commendable stability. The decline in catalyst performance can be attributed to the potential blockage of active sites caused by dyes that persist after regeneration. This blockage impedes the diffusion of dye molecules to the surface of the photocatalyst [61,62]. Notably, the regeneration outcomes for Methylene blue dye in

![Figure 8. Recyclability test for photodegradation of Methylene blue dye.](image)

Table 4. Photodegradation of several catalysts against Methylene blue dye.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Dose (g/L)</th>
<th>Concentration (mg/L)</th>
<th>Time (min)</th>
<th>Photodegradation (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$-Fe$_3$O$_4$-Bentonite</td>
<td>0.3</td>
<td>40</td>
<td>90</td>
<td>90</td>
<td>[53]</td>
</tr>
<tr>
<td>MnO$_2$/bentonite</td>
<td>0.02</td>
<td>20</td>
<td>120</td>
<td>87</td>
<td>[54]</td>
</tr>
<tr>
<td>CeO/CuO</td>
<td>1.0</td>
<td>0.03</td>
<td>150</td>
<td>85.66</td>
<td>[55]</td>
</tr>
<tr>
<td>Zeolitic Imidazolate Framework-8</td>
<td>2</td>
<td>6</td>
<td>180</td>
<td>93.00</td>
<td>[56]</td>
</tr>
<tr>
<td>NiFe$_2$O$_4$/NiO</td>
<td>0.025</td>
<td>5</td>
<td>120</td>
<td>95.41</td>
<td>[57]</td>
</tr>
<tr>
<td>TiO$_2$-P25</td>
<td>0.125</td>
<td>10</td>
<td>300</td>
<td>60</td>
<td>[58]</td>
</tr>
<tr>
<td>B/P-carbons dots</td>
<td>0.05</td>
<td>10</td>
<td>60</td>
<td>92.3</td>
<td>[59]</td>
</tr>
<tr>
<td>Bentonite-Fe$_3$O$_4$</td>
<td>0.25</td>
<td>0.05</td>
<td>90</td>
<td>94.34</td>
<td>[19]</td>
</tr>
<tr>
<td>CeO$_2$NPs</td>
<td>0.25</td>
<td>5</td>
<td>90</td>
<td>90</td>
<td>[60]</td>
</tr>
<tr>
<td>Bentonite/PDA/Fe$_3$O$_4$/CuO</td>
<td>1.67</td>
<td>10</td>
<td>90</td>
<td>100</td>
<td>This work</td>
</tr>
</tbody>
</table>

Figure 8. Recyclability test for photodegradation of Methylene blue dye.
this study surpass those achieved with TiO$_2$-Fe$_3$O$_4$-Bentonite (20% reduction over six cycles) [53] and SnWO$_4$/ZnO (5.57% reduction over five cycles) [63].

4. Conclusions

This study successfully synthesized a magnetic bentonite/PDA/Fe$_3$O$_4$@CuO composite. The optimization of photodegradation was conducted using the RSM method with CCD, incorporating variables such as dye concentration, exposure time, and catalyst dose. The analysis results indicate a strong match between experimental data and predicted (R$^2 = 0.9769$), confirming adherence to the quadratic model. Maximum photodegradation efficiency (100%) was achieved under specific conditions: a Methylene blue dye concentration of 10 mg/L, an irradiation time of 90 min, and a catalyst dose of 1.67 g/L. The magnetic properties of this composite offer the advantage of facilitating the separation process. The catalyst demonstrates outstanding stability and can be regenerated for repeated use. The considerable efficacy of the catalyst in breaking down dyes holds promise for its application in wastewater containing dye compounds.

Acknowledgment

The research was supported by a grant awarded by Sriwijaya University through the Hibah Profesi Program, with Contract Number 0187/UN9.3.1/SK/2023, on April 18, 2023.

Credit Author Statement

Author contribution: Riyanti, F and Purwaningrum, W: Investigation, resources, Experiment and data analysis, Hariani, P.L: Conceptualization, writing, experiment and data analysis, Hasanudin: Methodology, experiment and data analysis, Rachmat, A: Review, editing and validation. All authors have read and agreed to the published version of the manuscript.

References

Copyright © 2024, ISSN 1978-2993

adsorption and rapid magnetic separation.

MnO

Zhang, Z., Chow, Y.T., Wang, X., Zhu, L., Zhang,

[60] Kalycioglu, Z., Uysal, B.O., Pekcan, O., Erim, F.B. (2023). Efficient photocatalytic degradation of Methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide. ACS Omega, 8(14), 13004-13015. DOI: 10.1021/acs.omega.3c00198

Copyright © 2024, ISSN 1978-2993