skip to main content

Temperature and Cr-Co ratio on Production of Diethyl Ether from Ethanol Dehydration using Cr-Co/γ-Al2O3 Catalyst

Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl. Arif Rahman Hakim, Sukolilo, Surabaya 60111, Indonesia

Received: 28 Oct 2024; Revised: 2 Dec 2024; Accepted: 3 Dec 2024; Available online: 4 Dec 2024; Published: 30 Dec 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The running down of fossil fuels and rising environmental concerns, there is an increasing emphasis on identifying eco-friendly alternative energy sources. Diethyl ether (DEE) is considered one such additive fuel that can replace fossil fuels. In this study, DEE was synthesized through the reaction dehydration of ethanol using γ-alumina catalysts impregnated with chromium and cobalt. The dehydration of ethanol performed in a fixed bed reactor using Cr-Co/γ-Al2O3catalysts loading. The effect of metal ratio of Cr-Co was examined. Catalyst characterization was carried out using XRD, BET, and SEM-EDX analyses. The dehydration reaction was conducted in a fixed-bed reactor at temperatures 100 to 200 ºC, with nitrogen gas flowrates between 200 and 600 mL/min as the carrier gas. The findings revealed that the increase chromium contents, and the temperature were augmenting the diethyl ether yield. And the increase of nitrogen flow rate is slightly increasing the yield of DEE and conversion of ethanol. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Ethanol; Diethyl ether; Dehydration; γ-Alumina catalyst
Funding: Ministry of Religion Affair, Republic of Indonesia

Article Metrics:

  1. Ibrahim, A. (2016). Investigating the effect of using diethyl ether as a fuel additive on diesel engine performance and combustion. Applied Thermal Engineering, 107, 853–862. DOI: 10.1016/j.applthermaleng.2016.07.061
  2. Varışlı, D. (2007). Kinetic studies for dimethyl ether and diethyl ether production. Doktora Tezi
  3. Ullmann, U. (1987). Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed. Weinhem Federal Republic of Germany: VCH Verlagsgesellschaft
  4. DeWilde, J.F., Chiang, H., Hickman, D.A., Ho, C.R., Bhan, A. (2013). Kinetics and mechanism of ethanol dehydration on γ-Al 2O3: The critical role of dimer inhibition. ACS Catalysis, 3(4), 798–807. DOI: 10.1021/cs400051k
  5. Han, Y., Lu, C., Xu, D., Zhang, Y., Hu, Y., Huang, H. (2011). Molybdenum oxide modified HZSM-5 catalyst: Surface acidity and catalytic performance for the dehydration of aqueous ethanol. Applied Catalysis A: General, 396(1–2), 8–13. DOI: 10.1016/j.apcata.2010.12.040
  6. Poole Jr, C.P., Mac Iver, D.S. (1957). The Physical Properties of Chromia-Alumina Catalysts. Advances in Catalysis, 9(C), 155–162. DOI: 10.1016/S0360-0564(08)60164-9
  7. Srinivasan, P.D., Khivantsev, K., Tengco, J.M.M., Zhu, H., Bravo-Suárez, J.J. (2019). Enhanced ethanol dehydration on Γ-Al2O3 supported cobalt catalyst. Journal of Catalysis, 373, 276–296. DOI: 10.1016/j.jcat.2019.03.024
  8. Phung, T.K., Lagazzo, A., Rivero Crespo, M.Á., Sánchez Escribano, V., Busca, G. (2014). A study of commercial transition aluminas and of their catalytic activity in the dehydration of ethanol. Journal of Catalysis, 311, 102–113. DOI: 10.1016/j.jcat.2013.11.010
  9. Rodríguez-González, L., Hermes, F., Bertmer, M., Rodríguez-Castellón, E., Jiménez-López, A., Simon, U. (2007). The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Applied Catalysis A: General, 328(2), 174–182. DOI: 10.1016/j.apcata.2007.06.003
  10. Sousa, Z.S.B., Veloso, C.O., Henriques, C.A., Teixeira da Silva, V. (2016). Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: Influence of reaction conditions and surface reaction studies. Journal of Molecular Catalysis A: Chemical, 422, 266–274. DOI: 10.1016/j.molcata.2016.03.005
  11. Chiang, H., Bhan, A. (2010). Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. Journal of Catalysis, 271(2), 251–261. DOI: 10.1016/j.jcat.2010.01.021
  12. Takahara, I., Saito, M., Inaba, M., Murata, K. (2005). Dehydration of ethanol into ethylene over solid acid catalysts. Catalysis Letters, 105(3–4), 249–252. DOI: 10.1007/s10562-005-8698-1
  13. Zhang, X., Wang, R., Yang, X., Zhang, F. (2008). Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous and Mesoporous Materials, 116(1–3), 210–215. DOI: 10.1016/j.micromeso.2008.04.004
  14. Ramesh, K., Hui, L.M., Han, Y.F., Borgna, A. (2009). Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catalysis Communications, 10(5), 567–571. DOI: 10.1016/j.catcom.2008.10.034
  15. Sheng, Q., Ling, K., Li, Z., Zhao, L. (2013). Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. Fuel Processing Technology, 110, 73–78. DOI: 10.1016/j.fuproc.2012.11.004
  16. Xin, H., Li, X., Fang, Y., Yi, X., Hu, W., Chu, Y., Zhang, F., Zheng, A., Zhang, H., Li, X. (2014). Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. Journal of Catalysis, 312, 204–215. DOI: 10.1016/j.jcat.2014.02.003
  17. Jingfa, D., Guirong, Z., Shuzhong, D., Haishui, P., Huaiming, W. (1988). Acidic properties of ZSM-5 zeolite and conversion of ethanol to diethyl ether. Applied Catalysis, 41(C), 13–22. DOI: 10.1016/S0166-9834(00)80378-4
  18. Alharbi, W., Brown, E., Kozhevnikova, E.F., Kozhevnikov, I. V. (2014). Dehydration of ethanol over heteropoly acid catalysts in the gas phase. Journal of Catalysis, 319, 174–181. DOI: 10.1016/j.jcat.2014.09.003
  19. Kamsuwan, T., Jongsomjit, B. (2016). A comparative study of different al-based solid acid catalysts for catalytic dehydration of ethanol. Engineering Journal, 20(3), 63–75. DOI: 10.4186/ej.2016.20.3.63
  20. Tresatayawed, A., Glinrun, P., Jongsomjit, B. (2019). Ethanol Dehydration over WO3/TiO2 Catalysts Using Titania Derived from Sol-Gel and Solvothermal Methods. International Journal of Chemical Engineering, 2019 DOI: 10.1155/2019/4936292
  21. Chen, G., Li, S., Jiao, F., Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catalysis Today, 125(1–2), 111–119. DOI: 10.1016/j.cattod.2007.01.071
  22. de Oliveira, T.K.R., Rosset, M., Perez-Lopez, O.W. (2018). Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catalysis Communications, 104, 32–36. DOI: 10.1016/j.catcom.2017.10.013
  23. Da Ros, S., Jones, M.D., Mattia, D., Schwaab, M., Noronha, F.B., Pinto, J.C. (2017). Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene. Applied Catalysis A: General, 530, 37–47. DOI: 10.1016/j.apcata.2016.11.008
  24. Chen, Y., Wu, Y., Tao, L., Dai, B., Yang, M., Chen, Z., Zhu, X. (2010). Dehydration reaction of bio-ethanol to ethylene over modified SAPO catalysts. Journal of Industrial and Engineering Chemistry, 16(5), 717–722. DOI: 10.1016/j.jiec.2010.07.013
  25. Peng, B., Dou, H., Shi, H., Ember, E.E., Lercher, J.A. (2018). Overcoming Thermodynamic Limitations in Dimethyl Carbonate Synthesis from Methanol and CO2. Catalysis Letters, 148(7), 1914–1919. DOI: 10.1007/s10562-018-2402-8
  26. Limlamthong, M., Chitpong, N., Jongsomjit, B. (2019). Influence of phosphoric acid modification on catalytic properties of Al2O3 catalysts for dehydration of ethanol to diethyl ether. Bull. Chem. React. Eng. Catal. 14:1–8
  27. Chaichana, E., Boonsinvarothai, N., Chitpong, N., Jongsomjit, B. (2019). Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification. Journal of Porous Materials, 26(2), 599–610. DOI: 10.1007/s10934-018-0663-7
  28. Kamsuwan, T., Praserthdam, P., Jongsomjit, B. (2017). Diethyl ether production during catalytic dehydration of ethanol over ru- and pt- modified h-beta zeolite catalysts. Journal of Oleo Science, 66(2), 199–207. DOI: 10.5650/jos.ess16108
  29. Phung, T.K., Hernández, L.P., Busca, G. (2015). Conversion of Ethanol over transition metal oxide catalysts: Effect of tungsta addition on catalytic behaviour of titania and zirconia. Applied Catalysis A: General, 489, 180–187. DOI: 10.1016/j.apcata.2014.10.025
  30. Zhan, N., Hu, Y., Li, H., Yu, D., Han, Y., Huang, H. (2010). Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis. Catalysis Communications, 11(7), 633–637. DOI: 10.1016/j.catcom.2010.01.011
  31. Hong, E., Sim, H.I., Shin, C.H. (2016). The effect of Brønsted acidity of WO3/ZrO2 catalysts in dehydration reactions of C3 and C4 alcohols. Chemical Engineering Journal, 292, 156–162. DOI: 10.1016/j.cej.2016.01.042
  32. Moser, W.R., Thompson, R.W., Chiang, C.C., Tong, H. (1989). Silicon-rich H-ZSM-5 catalyzed conversion of aqueous ethanol to ethylene. Journal of Catalysis, 117(1), 19–32. DOI: 10.1016/0021-9517(89)90217-0
  33. Nash, C.P., Ramanathan, A., Ruddy, D.A., Behl, M., Gjersing, E., Griffin, M., Zhu, H., Subramaniam, B., Schaidle, J.A., Hensley, J.E. (2016). Mixed alcohol dehydration over Brønsted and Lewis acidic catalysts. Applied Catalysis A: General, 510, 110–124. DOI: 10.1016/j.apcata.2015.11.019

Last update:

No citation recorded.

Last update:

No citation recorded.