skip to main content

Novel Study of Reaction Kinetics and Mass Transfer in Bioreactor Modelling: Prediction of Bioethanol Fermentation Performance by Saccharomyces cerevisiae on Continuous Fixed Bed Biofilm Plug Flow Reactor

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

Received: 16 Oct 2024; Revised: 2 Dec 2024; Accepted: 3 Dec 2024; Available online: 5 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Bioethanol implementation as a renewable fuel has yielded economic, social, and environmental benefits, including reduced fossil fuel consumption, enhanced energy diversity and supply security, lower greenhouse gas emissions, and support for agricultural communities. These impacts underscore the importance of advancing innovation and optimizing processes to increase bioethanol production. Therefore, basic knowledge of chemical engineering in bioethanol fermentation is important to be learnt as a preliminary study, such as reaction kinetics and transport phenomena. This work studies the reaction kinetics and mass transfer in continuous fixed bed biofilm plug flow reactor modelling to predict anaerobic Saccharomyces cerevisiae fermentation performance, which is still not studied comprehensively. This modelling provides an overview of the influence of various independent variables, namely temperature, initial substrate concentration, cell concentration, superficial flow rate, reactor diameter, and solid particle diameter on various dependent variables, namely final product concentration, residence time, reactor length, reactor volume, product productivity, and pressure drop. The most sensitive parameters related to product productivity are temperature and cell concentration, so in its implementation, the temperature must be controlled at its optimum temperature, and the inoculum must be prepared with high cell concentration. For the next study, it is recommended to study the optimization of reactor design and operation (i.e. the pumping system, cooling system, and pH control of the reactor) and the implementation of the reactor on the plant scale. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Bioethanol; bioreactor modelling; continuous fixed bed biofilm plug flow reactor; kinetic and mass transfer; Saccharomyces cerevisiae
Funding: Indonesia Endowment Funds for Education (LPDP), Ministry of Finance, Indonesia under contract 202207210109892

Article Metrics:

  1. Tse, T.J., Wiens, D.J., Reaney, M.J.T. (2021). Production of bioethanol—A review of factors affecting ethanol yield. Fermentation, 7(4), 268. DOI: 10.3390/fermentation7040268
  2. Indonesian National Standardization Unit (2022). SNI 7390:2022 – Denaturated Bioethanol for Gasohol [Real Title: SNI 7390:2022 – Bioetanol Terdenaturasi untuk Gasohol]. Jakarta: Indonesian National Standardization Unit
  3. Khuong, L.S., Masjuki, H.H., Zulkifli, N.W.M., Mohamad, E.N., Kalam, M.A., Alabdulkarem, A., Arslan, A., Mosarof, M.H., Syahir, A.Z., Jamshaid, M. (2017). Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Advances, 7(25), 15005–15019. DOI: 10.1039/C7RA00357A
  4. Wibowo, C.S., Sugiarto, B., Zikra, A., Budi, A., Mulya, T., Maymuchar (2018). The effect of gasoline-bioethanol blends to the value of fuel’s octane number. E3S Web of Conferences, 67, 02033. DOI: 10.1051/e3sconf/20186702033
  5. Sitorus, T.B., Siagian, J.A.R., Christopel, B. (2020). Study on the performance of the Otto engine by using mixtures of gasoline-bioethanol of nira. IOP Conference Series: Materials Science and Engineering, 725(1), 012015. DOI: 10.1088/1757-899X/725/1/012015
  6. Cantarella, H., Leal Silva, J.F., Nogueira, L.A.H., Maciel Filho, R., Rossetto, R., Ekbom, T., Souza, G.M., Mueller‐Langer, F. (2023). Biofuel technologies: Lessons learned and pathways to decarbonization. GCB Bioenergy, 15(10), 1190–1203. DOI: 10.1111/gcbb.13091
  7. Ajanovic, A., Haas, R. (2014). On the future prospects and limits of biofuels in Brazil, the US and EU. Applied Energy, 135, 730–737. DOI: 10.1016/j.apenergy.2014.07.001
  8. Roddy, D.J. (2012). Biomass and biofuels – Introduction. In: Sayigh, A. (ed) Comprehensive Renewable Energy. Elsevier, pp. 1–9. DOI: 10.1016/B978-0-08-087872-0.00501-1
  9. Altieri, A. (2012). Bioethanol Development in Brazil. In: Sayigh, A. (ed) Comprehensive Renewable Energy. Elsevier, pp. 15–26. DOI: 10.1016/B978-0-08-087872-0.00504-7
  10. Hartmann, F.S.F., Udugama, I.A., Seibold, G.M., Sugiyama, H., Gernaey, K. V. (2022). Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnology Advances, 60, 108015. DOI: 10.1016/j.biotechadv.2022.108015
  11. Villadsen, J., Nielsen, J., Lidén, G. (2011). Bioreaction Engineering Principles. New York: Springer
  12. Aslan, C., Devianto, H., Wonoputri, V., Harimawan, A. (2023). Study of cell elemental balance and cell thermodynamics in microorganism black box modeling: Prediction of bioethanol fermentation stoichiometry by Saccharomyces cerevisiae as a function of temperature. In: International Seminar on Chemical, Food, and Chemurgy Engineering Soehadi Reksowardojo. Bandung:
  13. Fogler, H.S. (2016). Elements of Chemical Reaction Engineering. USA: Prentice Hall
  14. Praj (2024). Advanced Bioethanol. In: https://www.praj.net/businesslines/advanced-bioethanol/
  15. Tomsa Destil (2024). Ethanol. In: https://tomsadestil.es/en/etanol/
  16. Vogelbusch (2024). Bioethanol Technology. In: https://www.vogelbusch-biocommodities.com/en/technology/alcohol-process-plants/bioethanol-technology/
  17. Espinosa-Ortiz, E.J., Gerlach, R., Peyton, B.M., Roberson, L., Yeh, D.H. (2023). Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives. Biofilm, 6, 100140. DOI: 10.1016/j.bioflm.2023.100140
  18. Lindeque, R., Woodley, J. (2019). Reactor selection for effective continuous biocatalytic production of pharmaceuticals. Catalysts, 9(3), 262. DOI: 10.3390/catal9030262
  19. Animia A, W., Chidinma T, E. (2020). Performance evaluation of PFR and CSTR 1- reactor tank for formaldehyde petrochemical production. International Journal of Chemical and Process Engineering Research, 7(1), 18–45. DOI: 10.18488/journal.65.2020.71.18.45
  20. Vega, J.L., Clausen, E.C., Gaddy, J.L. (1988). Biofilm reactors for ethanol production. Enzyme and Microbial Technology, 10(7), 390–402. DOI: 10.1016/0141-0229(88)90033-6
  21. Sharma, V., Mishra, H.N. (2014). Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT - Food Science and Technology, 59(2), 1123–1128. DOI: 10.1016/j.lwt.2014.05.039
  22. Cui, Y., Liu, R., Xu, L., Zheng, W., Sun, W. (2018). Fermentation kinetics of enzymatic hydrolysis bagasse solutions for producing L-lactic acid. Sugar Tech, 20(3), 364–370. DOI: 10.1007/s12355-018-0592-4
  23. Damayanti, A., Bahlawan, Z.A.S., Kumoro, A.C. (2022). Modeling of bioethanol production through glucose fermentation using Saccharomyces cerevisiae immobilized on sodium alginate beads. Cogent Engineering, 9(1) DOI: 10.1080/23311916.2022.2049438
  24. Shuler, M.L., Kargi, F., DeLisa, M.P. (2017). Bioprocess Engineering: Basic Concepts, 3rd ed. Upper Saddle River: Prentice Hall
  25. Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2002). Transport Phenomena. New York: John Wiley & Sons
  26. Germec, M., Turhan, I., Karhan, M., Demirci, A. (2019). Kinetic modeling and techno-economic feasibility of ethanol production from carob extract based medium in biofilm reactor. Applied Sciences, 9(10), 2121. DOI: 10.3390/app9102121
  27. Benyahia, F., O’Neill, K.E. (2005). Enhanced voidage correlations for packed beds of various particle shapes and sizes. Particulate Science and Technology, 23(2), 169–177. DOI: 10.1080/02726350590922242
  28. Geankoplis, C.J. (1993). Transport Processes and Unit Operations. New Jersey: Prentice Hall
  29. Stewart, P.S. (2003). Diffusion in biofilms. Journal of Bacteriology, 185(5), 1485–1491. DOI: 10.1128/JB.185.5.1485-1491.2003
  30. Zakhartsev, M., Yang, X., Reuss, M., Pörtner, H.O. (2015). Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. Journal of Thermal Biology, 52, 117–129. DOI: 10.1016/j.jtherbio.2015.05.008
  31. Wu, C., Tanaka, K., Tani, Y., Bi, X., Liu, J., Yu, Q. (2022). Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Science of The Total Environment, 821, 153265. DOI: 10.1016/j.scitotenv.2022.153265
  32. Negri, M., Wilhelm, M., Hendrich, C., Wingborg, N., Gediminas, L., Adelöw, L., Maleix, C., Chabernaud, P., Brahmi, R., Beauchet, R., Batonneau, Y., Kappenstein, C., Koopmans, R.-J., Schuh, S., Bartok, T., Scharlemann, C., Gotzig, U., Schwentenwein, M. (2018). New technologies for ammonium dinitramide based monopropellant thrusters – The project RHEFORM. Acta Astronautica, 143, 105–117. DOI: 10.1016/j.actaastro.2017.11.016
  33. Khoja, A.H., Ali, E., Zafar, K., Ansari, A.A., Nawar, A., Qayyum, M. (2015). Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. African Journal of Biotechnology, 14, 2455–2462. DOI: 10.5897/AJB2015.14569
  34. Pamphile, B.N., Ndjibu, N.J., Vanshok, E., Gédéon, E.N. (2022). Modeling and simulation of reactors in plug flow reactor (PFR) and Packed Bed Reactor (PBR) series for the conversion of methanol into hydrocarbons. African Journal of Environmental Science and Technology, 16(8), 286–294. DOI: 10.5897/AJEST2022.3091
  35. Maklavany, D.M., Shariati, A., Khosravi-Nikou, M.R., Roozbehani, B. (2017). Hydrogen production via low temperature water gas shift reaction: Kinetic study, mathematical modeling, simulation and optimization of catalytic fixed bed reactor using gPROMS. Chemical Product and Process Modeling, 12(3). DOI: 10.1515/cppm-2016-0063
  36. Zempléni, A., Hansen, B.W., KiØrboe, T., Ryderheim, F. (2022). Resolving the paradox of the ambush feeding cyclopoid copepod Apocyclops royi being microphageous. Journal of Plankton Research, 44(6), 936–941. DOI: 10.1093/plankt/fbac040

Last update:

No citation recorded.

Last update:

No citation recorded.