skip to main content

Sonochemically Modified Lapindo Mud Using Sulfuric Acid for Efficient Adsorption of Phenol in Aqueous Media and Real Wastewater Samples

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2Research Center for Chemistry, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten 15314, Indonesia

3Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Received: 14 Oct 2024; Revised: 28 Nov 2024; Accepted: 28 Nov 2024; Available online: 3 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Pharmaceutical industrial wastewater frequently contains high amounts of phenolic substances, which pose severe threats to the ecosystem and human health. Therefore, efficient removal of these pollutants is urgently needed. In the present work, sulfated Lapindo mud (SLM) was prepared using the sonochemical method and applied as an adsorbent for phenol removal in aqueous media and actual wastewater samples from Code River, Yogyakarta. Modification of Lapindo mud (LM) using sulfuric acid enables it to remove its impurities, resulting in a material containing 78.4% silica (SiO2) and 15.3% alumina (Al2O3). The SLM adsorbent demonstrated sufficient adsorption performance of 49.8% with an optimal initial phenol concentration of 120 mg/L with a contact time of 100 min at pH of 10. The maximum adsorption capacity (qmax) obtained by the Langmuir isotherm model was 27.2 mg/g. The adsorption process follows pseudo-second-order because it has two active sites, Brønsted acid sites (–SiOH and –SO3H) and Lewis acid sites (Si4+). Phenol in base condition undergoes a deprotonation reaction that is stabilized by the acid-active sites of the SLM adsorbent through intermolecular forces. Considering the large adsorption capacity and quick kinetic, the SLM adsorbent can be a promising cheap and green material to remove phenolic substances in wastewater, especially in the river near the medical facility. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Adsorption; phenol; Lapindo mud, sulfation, sonochemical method
Funding: Universitas Gadjah Mada

Article Metrics:

  1. Rahmayanti, A., A’yuni, Q., Hartati, H., Purkan, P., Romanza, I.G. (2020). Synthesis and characterization of silica gel from Lapindo mud Sidoarjo. In IOP Conference Series: Earth and Environmental Science. 456, 012007. DOI: 10.1088/1755-1315/456/1/012007
  2. Tang, F., Li, L., Chen, D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials. 24, 1504–1534. DOI: 10.1002/adma.201104763
  3. Samart, C., Prawingwong, P., Amnuaypanich, S., Zhang, H., Kajiyoshi, K., Reubroycharoen, P. (2014). Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry. 20, 2153–2158. DOI: 10.1016/j.jiec.2013.09.045
  4. Numpilai, T., Muenmee, S., Witoon, T. (2016). Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen. Materials Science and Engineering: C. 59, 43–52. DOI: 10.1016/j.msec.2015.09.095
  5. Parlett, C.M.A., Wilson, K., Lee, A.F. (2013). Hierarchical porous materials: catalytic applications. Chemical Society Reviews 42, 3876–3893. DOI: 10.1039/C2CS35378D
  6. Witoon, T. (2012). Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics. 137, 235–245. DOI: 10.1016/j.matchemphys.2012.09.014
  7. Xu, X., Liu, Y., Wang, T., Ji, H., Chen, L., Li, S., Liu, W. (2019). Co-adsorption of ciprofloxacin and Cu(II) onto titanate nanotubes: speciation variation and metal-organic complexation. Journal of Molecular Liquids. 292, 111375. DOI: 10.1016/j.molliq.2019.111375
  8. Lei, X., Li, X., Ruan, Z., Zhang, T., Pan, F., Li, Q., Xia, D., Fu, J. (2018). Adsorption-photo-catalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes. Journal of Molecular Liquids. 266, 122–131. DOI: 10.1016/j.molliq.2018.06.053
  9. Liu, W., Wang, T., Borthwick, A.G.L., Wang, Y., Yin, X., Li, X., Ni, J. (2013). Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Science of the Total Environment. 456, 171–180. DOI: 10.1016/j.scitotenv.2013.03.082
  10. Praveen, P., Loh, K.C. (20130. Trioctylphosphine oxide-impregnated hollow fiber membranes for removal of phenol from wastewater. Journal of Membrane Science. 437, 1–6. DOI: 10.1016/j.memsci.2013.02.057
  11. Mareai, B. M., Fayed, Aly, S.A., Elbarki, W.I. (2020). Performance comparison of phenol removal in pharmaceutical wastewater by activated sludge and extended aeration augmented with activated carbon. Alexandria Engineering Journal. 59, 5187–5196. DOI: 10.1016/j.aej.2020.09.048
  12. Gami, A.A., Shukor, M.Y., Khalil, K.A., Dahalan, F. A., Khalid, A., Ahmad, S.A. (2014). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology, 2, 11–24. DOI: 10.54987/jemat.v2i1.89
  13. Ahmaruzzaman, M., Sharma, D.K. (2005). Adsorption of phenols from wastewater. Journal of Colloid and Interface Science. 287, 14–24. DOI: 10.1016/j.jcis.2005.01.075
  14. Matias, T., Marques, J., Quina, M.J., Gando-Ferreira, L., Valente, A.J.M., Portugal, A., Duraes, L. (2015). Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 480, 260–269. DOI: 10.1016/i.colsurfa.2015.01.074
  15. Jiang, N., Shang, R., Khalil, S.G.J. Heijman, F.A., L.C. Rietveld. (2020). Adsorption of triclosan, trichlorophenol, and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Separation and Purification Technology. 235, 116152. DOI: 10.1016/i.seppur.2019.116152
  16. Amri, A., Rezonsi, R., Ahmad, N., Taher, T., Palapa, N. R., Mohadi, R., Lesbani, A. (2023). Biochar-Modified Layered Double Hydroxide for Highly Efficient on Phenol Adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 18, 460–472. DOI: 10.9767/bcrec.19898
  17. Saraswati, S.P., Ardion, M. V., Widodo, Y. H., Hadisusanto, S., 2019. Water Quality Index Performance for River Pollution Control Based on Better Ecological Point of View (A Case Study in Code, Winongo, Gadjah Wong Streams). Journal of the Civil Engineering Forum. 5, 47–55. DOI: 10.22146/jcef.41165
  18. Rokhim, D.A., Islamiyah, K.K., Sanjaya, E.H. (2022). A review: analysis of metal and mineral content in the complexity of Sidoarjo hot mud as a source of renewable energy in Indonesia. Journal of the Turkish Chemical Society. 9, 1255–1262. DOI: 10.18596/jotcsa.1093763
  19. Wangsa, W., Saviola, A.J., Wijaya, K., Bhagaskara, A., Hauli, L., Saputra, D.A. (2024). Utilization of laboratory glove waste for fuel production through pyrolysis-hydrocracking consecutive process catalyzed by sulfated Indonesian natural zeolite. Reaction Kinetics, Mechanisms and Catalysis. 137, 1495–1514. DOI: 10.1007/s11144-024-02595-0
  20. Trisunaryanti, W., Triyono, T., Fallah, I.I., Salsiah, S., Alisha, G.D. (2022). Highly Selective Biohydrocarbon Production using Sidoarjo Mud Based Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis. 17, 712–724. DOI: 10.9767/bcrec.17.4.15472.712-724
  21. Paukshtis, E.A., Glazneva, T.S., Sadovskaya, E.M. Kaichev, V.V. (2019). Fiberglass fabrics as unusual catalytic materials: Features and applications. Journal of Mineral, Metal and Material Engineering. 5, 89–105. DOI: 10.31437/2414-2115/2019/05/11
  22. Ghoreishi, K., Asim, N., Yarmo, M., Samsudin, M. (2014). Mesoporous phosphated and sulphated silica as solid acid catalysts for glycerol acetylation. Chemical Papers. 68, 1199–1204. DOI: 10.2478/s11696-014-0550-x
  23. Trisunaryanti, W., Larasati, S., Bahri, S., Ni’mah, Y.L., Efiyanti, L., Amri, K., Nuryanto, R., Sumbogo, S.D. (2020). Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in hydrotreatment of waste palm cooking oil. Journal of Environmental Chemical Engineering. 8, 104477. DOI: 10.1016/j.jece.2020.104477
  24. Aneu, A., Wijaya, K., Syoufian, A. (2022). Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils. Journal of Porous Materials. 29, 1321–1335. DOI: 10.1007/s10934-022-01258-6
  25. Wijaya, K., Saputri, W. D., Aziz, I.T.A., Wangsa, Heraldy, E., Hakim, L., Utami, M. (2021). Mesoporous silica preparation using sodium bicarbonate as template and application of the silica for hydrocracking of used cooking oil into biofuel. Silicon. 14, 1583–1591. DOI: 10.1007/s12633-021-00946-3
  26. Ge, Y., Jia, Z., Gao, C., Gao, P., Zhao, L., Zhao, Y. (2014). Synthesis of mesoporous silica-alumina materials via urea-templated sol-gel route and their catalytic performance for THF polymerization. Russian Journal of Physical Chemistry A. 88, 1650 – 1655. DOI: 10.1134/S0036024414100355
  27. Niasari, S. M., Esmaeili-Zare, M., Sobhani, A. (2012). Cubic HgSe nanoparticles: sonochemical synthesis and characterisation. Micro & Nano Letters. 7, 1300–1304. DOI: 10.1049/mnl.2012.0709
  28. Ramesh, K., Reddy, K.S., Rashmi, I., Biswas, A. K. (2014). Porosity distribution, surface area, and morphology of synthetic potassium zeolites: A SEM and N2 adsorption study. Communications In Soil Science and Plant Analysis. 45, 2171–2181. DOI: 10.1080/00103624.2014.929699
  29. Soboleva, T., Zhao, X., Malek, K., Xie, Z., Navessin, T., Holdcroft, S. (2010). On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Applied Materials & Interfaces. 2, 375–384. DOI: 10.1021/am900600y
  30. Pitsawong, W., Chenprakhon, P., Dhammaraj, T., Medhanavyn, D., Sucharitakul, J., Tongsook, C., Miller, A. F. (2020). Tuning of pKa values activates substrates in flavin-dependent aromatic hydroxylases. Journal of Biological Chemistry. 295, 3965–3981. DOI: 10.1074/jbc.RA119.011884
  31. Nora, M., Bhagaskara, A., Agustisari, V., Lim, A., Alfalah, H.R., Siswanta, D. (2023). Fabrication of Polystyrene Sulfonate-Chitosan (PSS-Chitosan) Membrane as Dodecyl Benzene Sulfonate (DBS) Adsorbent in Laundry Wastewater. Jurnal Kimia Sains & Aplikasi. 26, 19–27. DOI: 10.14710/jksa.26.1.19-27
  32. Mirzaee, E., Sartaj, M. (2022). Activated carbon-based magnetic composite as an adsorbent for removal of polycyclic aromatic hydrocarbons from aqueous phase: Characterization, adsorption kinetics, and isotherm studies. Journal of Hazardous Materials. 6, 100083. DOI: 10.1016/j.hazadv.2022.100083
  33. Khumalo, S.M., Bakare, B.F., Rathilal, S. (2024). Single and multicomponent adsorption of amoxicillin, ciprofloxacin, and sulfamethoxazole on chitosan-carbon nanotubes hydrogel beads from aqueous solutions: kinetics, isotherms, and thermodynamic parameters. Journal of Hazardous Materials. 13, 100404. DOI: 10.1016/j.hazadv.2024.100404
  34. Ji. W.H., Guo, Y.S., Wang, X., Lu, X.F., Guo, D.S. (2019). Amino-modified covalent organic framework as solid phase extraction absorbent for determination of carboxylic acid pesticides in environmental water samples. Journal of Chromatography A. 1595, 11–18. DOI: 10.1016/j.chroma.2019.02.048
  35. Hayat, W., Du, X., Liu, Z., Hussain, I., Naseem, K., Zhang, Y. (2024). Removal of methomyl in water by leaves-generated biochar: Effect of metallic coating, kinetics, and important role of hydroxyl radical. Surfaces and Interfaces. 48, 104306. DOI: 10.1016/j.surfin.2024.104306
  36. Yu, Y., Liu, Ye., Hao, L., Zhu, B., Yang, Xi., Ge, S. (2024). Enhanced adsorption and cytotoxicity of hydrothermally aged microplastics for volatile organic compounds in sludge. Journal of Environmental Chemical Engineering. 12, 112104. DOI: 10.1016/j/jece.2024/112104

Last update:

No citation recorded.

Last update:

No citation recorded.