skip to main content

Conjugated Polyvinyl Alcohol Modified SnO2 for Efficient Visible Light Photocatalytic Reduction of Cr(VI)

1School of Materials and Chemical Engineering, Xuzhou University of Technology, No.2, Lishui Road, Yunlong District, Xuzhou, 221018, China

2School of Chemistry and Chemical Engineering, Yili Normal University, Yining, Xinjiang, 835000, China

Received: 3 Oct 2024; Revised: 16 Nov 2024; Accepted: 16 Nov 2024; Available online: 23 Nov 2024; Published: 30 Dec 2024.
Editor(s): Rodiansono Rodiansono
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The photocatalytic activity of tin dioxide (SnO2) is limited due to its inadequate response to the solar spectrum, wide band gap, and low visible light photocatalytic activity. Here, we synthesized conjugated polyvinyl alcohol (CPVA) modified tin dioxide (CPVA/SnO2) through in-situ hydrothermal synthesis and evaluated its performance for photocatalytic reduction of hexavalent chromium Cr(VI). A series of testing and characterization results revealed that CPVA was uniformly coated on the surface of SnO2, forming a mesoporous CPVA/SnO2 heterojunction with enhanced crystallinity and reduced oxygen defects, which resulted in an expanded light absorption range towards the red light region. The reaction rate constant of CPVA/SnO2-A for photocatalytic reduction of Cr(VI) under visible light (0.060 min-1) was 6 times higher than that of homemade CPVA/TiO2 and 2.87 times higher than that of SnO2 for the photocatalytic reduction of Cr(VI) under UV light (0.0209 min-1). The photocatalytic mechanism indicates that CPVA/SnO2 exhibited significantly enhanced performance under UV-light irradiation by forming a type II heterojunction. When CPVA/SnO2 was exposed to visible light, photogenerated electrons on the lowest unoccupied molecular orbital (LUMO) of CPVA were efficiently transferred to the surface of SnO2 through the CPVA/SnO2 heterojunction, reducing electron-hole recombination while also photosensitizing the photocatalyst and promoting efficient photocatalysis under visible light illumination. Ultimately, this process effectively reduces Cr(VI) to Cr(III). Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: Polyvinyl Alcohol; CPVA/SnO2; Heterojunction; Photocatalytic Reduction; Aqueous Cr(VI)
Funding: Science and Technology Project of Xuzhou under contract KC21286; Jiangsu Provincial Natural Science Foundation under contract BK20240332; the Natural Natural Science Foundation of China under contract NO. 22202169; Innovation and entrepreneurship projects for college students under contract xcx2024002

Article Metrics:

  1. Wang, C. C., Du, X. D., Li, J., Guo, X. X., Wang, P., Zhang, J. (2016). Photocatalytic Cr (VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental, 193, 198-216. DOI: 10.1016/j.apcatb.2016.04.030
  2. Liu, Z., Yu, Y., Zhu, X., Fang, J., Xu, W., Hu, X., Li, R., Yao, L., Qin, J., Fang, Z. (2022). Semiconductor heterojunctions for photocatalytic hydrogen production and Cr (VI) Reduction: A review. Materials Research Bulletin, 147, 111636. DOI: 10.1016/j.materresbull.2021.111636
  3. Li, Q., Zhuang, X., Zhou, G., Yang, Z., Yang, T., Xiao, H., Xu, T., Wang, W. (2023). Efficient removal of Cr (VI) from wastewater by ZnO-polyacrylic acid/cellulose fiber/polyethylene glycol hydrogel: Synergistic effect of adsorption and photocatalytic reduction. Journal of Environmental Chemical Engineering, 11(5), 110390. DOI: 10.1016/j.jece.2023.110390
  4. Xing, X., Zhang, L., Ren, Y., Li, Y., Yu, H., Shi, W. (2024). Double bismuth-based Bi2S3/Bi2MoO6 S-scheme heterojunction for ultrafast photocatalytic removal of Cr (VI). Journal of Environmental Chemical Engineering, 12(2), 112122. DOI: 10.1016/j.jece.2024.112122
  5. Zhao, F., Liu, Y., Hammouda, S.B., Doshi, B., Guijarro, N., Min, X., Tang, C., Sillanpää, M., Sivula, K., Wang, S. (2020). MIL-101 (Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr (VI) and oxidation of bisphenol A in aqueous media. Applied Catalysis B: Environmental. 272, 119033. DOI: 10.1016/j.apcatb.2020.119033
  6. Zhang, J., Zhang, W., Yuan, F., Yang, Z., Lin, J., Huang, Y., Ding, M. (2021). Effect of Bi5O7I/calcined ZnAlBi-LDHs composites on Cr (VI) removal via adsorption and photocatalytic reduction. Applied Surface Science, 562, 150129. DOI: 10.1016/j.apsusc.2021.150129
  7. Luo, N., Chen, C., Yang, D., Hu, W., Dong, F. (2021). S defect-rich ultrathin 2D MoS2: the role of S point-defects and S strip-defects in the removal of Cr (VI) via synergistic adsorption and photocatalysis. Applied Catalysis B: Environmental, 299, 120664. DOI: 10.1016/j.apcatb.2021.120664
  8. Shen, X., Zheng, T., Yang, J., Shi, Z., Xue, Q., Liu, W., Shan, S., Wong, M. (2020). Removal of Cr (VI) from acid wastewater by BC/ZnFe2O4 magnetic nanocomposite via the synergy of absorption-photocatalysis. ChemCatChem, 12(16), 4121-4131. DOI: 10.1002/cctc.202000619
  9. Long, Z., Zhang, G., Du, H., Zhu, J., Li, J. (2021). Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr (VI). Journal of Hazardous Materials, 407, 124394. DOI: 10.1016/j.jhazmat.2020.124394
  10. Wang, K., Chen, P., Nie, W., Xu, Y., Zhou, Y. (2019). Improved photocatalytic reduction of Cr (VI) by molybdenum disulfide modified with conjugated polyvinyl alcohol. Chemical Engineering Journal, 359, 1205-1214. DOI: 10.1016/j.cej.2018.11.057
  11. Islam J.B., Furukawa M., Tateishi I., Katsumata, H., Kaneco, S. (2021). Formic acid motivated photocatalytic reduction of Cr (VI) to Cr (III) with ZnFe2O4 nanoparticles under UV irradiation. Environmental Technology, 42(17), 2740-2748. DOI: 10.1080/09593330.2020.1713902
  12. Zhang, M., Liu, X. (2022). Direct Z-scheme WO3/In2S3 heterostructures for enhanced photocatalytic reduction Cr (VI). Journal of Alloys and Compounds, 908, 164488. DOI: 10.1016/j.jallcom.2022.164488
  13. Zhang, F., Zhang, Y., Zhou, C., Yang, Z., Xue, H., Dionysiou, D.D. (2017). A new high efficiency visible-light photocatalyst made of SnS2 and conjugated derivative of polyvinyl alcohol and its application to Cr (VI) reduction. Chemical Engineering Journal, 324, 140-153. DOI: 10.1016/j.cej.2017.05.009
  14. Silva, E., Alvarado-Beltrán, C.G., Gaxiola, A., Orozco-Carmona, V.M., Luque, P.A., Castro-Beltrán, A. (2023). A new green procedure to obtain and photosensitize SnO2, in one step, for solar photocatalysis using natural dyes. Ceramics International, 49(11), 16732-16739. DOI: 10.1016/j.ceramint.2023.02.034
  15. Huang, S., Zhang, J., Qin, Y., Song, F., Du, C., Su, Y. (2021). Direct Z-scheme SnO2/Bi2Sn2O7 photocatalyst for antibiotics removal: Insight on the enhanced photocatalytic performance and promoted charge separation mechanism. Journal of Photochemistry and Photobiology A: Chemistry. 404, 112947. DOI: 10.1016/j.jphotochem.2020.112947
  16. Wang, H., Liu, J., Xiao, X., Meng, H., Wu, J., Guo, C., Zheng, M., Wang, X., Guo, S., Jiang, B. (2023). Engineering of SnO2/TiO2 heterojunction compact interface with efficient charge transfer pathway for photocatalytic hydrogen evolution. Chinese Chemical Letters, 34(1), 107125. DOI: 10.1016/j.cclet.2022.01.018
  17. Liang, X., Dai, R., Wang, Q., Zhang, B. (2023). Antibacterial activity of SnO2 in visible light enhanced by erbium-cobalt co-doping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676, 132257. DOI: 10.1016/j.colsurfa.2023.132257
  18. Ponnamma, D., Elgawady, Y., Nair, S.S., Hassan, M.K., Al‐Maadeed, M. (2022). Core-shell nanofibers of polyvinyl alcohol/polylactic acid containing TiO2 nanotubes for natural sunlight driven photocatalysis. Macromolecular Materials and Engineering, 307(2), 2100482. DOI: 10.1002/mame.202100482
  19. Zhang, J., Yang, H., Jiang, L., Dan, Y. (2016). Enhanced photo-catalytic activity of the composite of TiO2 and conjugated derivative of polyvinyl alcohol immobilized on cordierite under visible light irradiation. Journal of energy chemistry, 25(1), 55-61. DOI: 10.1016/j.jechem.2015.10.010
  20. Li, J., Peng, T., Zhang, Y., Zhou, C., Zhu, A. (2018). Polyaniline modified SnO2 nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) under visible light. Separation and Purification Technology, 201, 120-129. DOI: 10.1016/j.seppur.2018.03.010
  21. Zhang, L., Qi, H., Zhao, Y., Zhong, L., Zhang, Y., Wang, Y., Xue, J., Li, Y (2019). Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Applied Surface Science, 498, 143855. DOI: 10.1016/j.apsusc.2019.143855
  22. Wu, X., Chen, S., Jiang, Y., Zhao, X., Li, Z., Zhou, Y., Li, J. (2023). 1D/2D Rod-sheet shape Bi2S3 photocatalyst for photocatalytic reduction Cr (VI) under visible light. Bulletin of Chemical Reaction Engineering & Catalysis, 18(4). DOI: 10.9767/bcrec.20054
  23. Chen, J., Wang, B., Wang, J., Zhang, Y. (2022). Development of a new high-performance visible-light photocatalyst by modifying tin disulfde with cyclized polyacrylonitrile. Materials Letters, 330, 133353. DOI: 10.1016/j.matlet.2022.133353
  24. Sasikala, S., Balakrishnan, M., Kumar, M., Chang, J.H. (2023). Effect of solvent mixtures on the unique morphology for photocatalytic activity of Bi2S3 nanoparticles synthesized by microwave irradiation method. Inorganic Chemistry Communications, 153, 110854. DOI: 10.1016/j.inoche.2023.110854
  25. Haider, A., Ali., Cun, Y., Bai, X., Xu, Z., Zi, Y., Qiu, J., Song, Z., Huang, A., Yang, Z. (2022). Anti-counterfeiting applications by photochromism induced modulation of reversible upconversion luminescence in TiO2:Yb3+, Er3+ ceramic. Journal of Materials Chemistry C, 10, 6243. DOI: 10.1039/d2tc00859a
  26. Kandasamy, M., Seetharaman, A., Sivasubramanian, D., Nithya, A., Jothivenkatachalam, K., Maheswari, N., Gopalan, M., Dillibabu, S., Eftekhari, A. (2018). Ni-doped SnO2 nanoparticles for sensing and photocatalysis. ACS Applied Nano Materials, 1(10), 5823-5836. DOI: 10.1021/acsanm.8b01473
  27. Kumar, M.R., Murugadoss, G., Venkatesh, N., Sakthivel, P. (2020). Synthesis of Ag2O-SnO2 and SnO2‐Ag2O nanocomposites and investigation on photocatalytic performance under direct sun light. ChemistrySelect, 5(23), 6946-6953. DOI: 10.1002/slct.202001227
  28. Emami, S., Alavi Nikje, M.M. (2018). Magnetic Fe3O4/SiO2/NH2 as the recyclable heterogeneous nanocatalyst on bisphenol-A recovery from polycarbonate wastes. Russian Journal of Applied Chemistry, 91, 159-166. DOI: 10.1134/s107042721801024x
  29. Wang, J., Chen, Y. (2022). Simple synthesis of conjugated polyvinyl alcohol derivative-modified ZnFe2O4 nanoparticles with higher photocatalytic efficiency. Powder Technology, 402 117360. DOI: 10.1016/j.powtec.2022.117360
  30. Premkumar, H. (2024). Synthesis, characterization and photocatalytic performance of polyvinyl alcohol/zinc oxide nanocomposites: A comprehensive study. Nano-Structures & Nano-Objects, 39, 101208. DOI: 10.1016/j.nanoso.2024.101208
  31. Bardestani, R., Patience, G.S., Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781-2791. DOI: 10.1002/cjce.23632
  32. Su, Z., Zhang, B., Cheng, X., Xu, M., Chen, G., Sha, Y., Wang, Y., Hu, J., Duan, R., Zhang, J. (2022). SnS2/polypyrrole for high-efficiency photocatalytic oxidation of benzylamine. Dalton Transactions, 51, 13601. DOI: 10.1039/d2dt01899c
  33. Zhao, Y., Sun, D., Hu, K., Zhao, W., Huang, F. (2020). Surface defect engineering of SnS2 nanocrystals for enhanced photocatalytic reduction of Cr(VI) under visible light, Inorganic Chemistry Communications, 114, 107849. DOI: 10.1016/j.inoche.2020.107849
  34. Iqbal, M., Ibrar, A., Ali A., Hussain, S., Shad, S., Ullah, S., Alshahrani, T., Hakami, J., Khan, F., Thebo, K.H. (2022). Facile synthesis of Mn doped Bi2S3 photocatalyst for efficient degradation of organic dye under visible-light irradiation. Journal of Molecular Structure, 1267, 133598. DOI: 10.1016/j.molstruc.2022.133598
  35. Liang, P., Yuan, L., Du, K., Wang, L., Li, Z., Deng, H., Wang, X., Luo, S, Shi, W. (2021). Photocatalytic reduction of uranium (VI) under visible light with 2D/1D Ti3C2/CdS. Chemical Engineering Journal, 420, 129831. DOI: 10.1016/j.cej.2021.129831
  36. Du, P., Chang, J., Zhao, H., Liu, W., Dang, C., Tong, M., Ni, J., Zhang, B. (2018). Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light. ACS Applied Energy Materials. 1(5), 2123-2133. DOI: 10.1021/acsaem.8b00197
  37. Qi, K., Liu, S., Qiu, M. (2018). Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chinese Journal of Catalysis, 39, 867-875. DOI: 10.1016/s1872-2067(17)62999-1

Last update:

No citation recorded.

Last update:

No citation recorded.