skip to main content

Oxidation of Styrene to Benzaldehyde Using Environmentally Friendly Calcium Sulfate Hemihydrate-Supported Titania Catalysts

1Department of Chemistry, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

3Chemistry Department, Brawijaya University, Malang, 65145, East Java, Indonesia

4 Chemical Engineering Department, Universitas Jambi, Indonesia

5 Chemical Engineering Department, University of Warwick, United Kingdom

6 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

7 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

8 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia

9 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

View all affiliations
Received: 1 Oct 2024; Revised: 23 Nov 2024; Accepted: 25 Nov 2024; Available online: 27 Nov 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This paper presents the synthesis and characterization of calcium sulfate hemihydrate (CSH)-supported titania (TiO2) catalysts and their application in the environmentally friendly oxidation of styrene to benzaldehyde using hydrogen peroxide (H2O2) as the oxidant. The study explores the catalyst's structure-activity relationship, emphasizing the importance of mesoporous materials for enhanced catalytic performance. The CSH-Titania catalysts were synthesized using fish bone-derived CSH as a support, which aligns with green chemistry principles. Characterization techniques such as Fourier Transform Infra Red (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis confirmed the successful impregnation of titania and its catalytic efficiency. The catalysts exhibited high selectivity for benzaldehyde, achieving up to 49.45% conversion of styrene, with benzaldehyde as being the main product. The research highlights that the catalyst’s performance decreased after calcination due to a reduced surface area and pore volume, yet it maintained recyclability across three cycles with minimal  lose  in selectivity loss. Overall, this study introduces a cost-effective and sustainable approach to styrene oxidation, demonstrating the potential for industrial application in producing high-value chemicals with minimal environmental impact. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: CSH-Titania; styrene oxidation; benzaldehyde; green chemistry; hydrogen peroxide; mesoporous materials
Funding: Kementerian Riset dan Teknologi, Republik Indonesia under contract 618/UN17.L1/HK/2024

Article Metrics:

  1. Xie, L., Wang, H., Lu, B., Zhao, J., Cai, Q. (2018). Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. Reaction Kinetics, Mechanisms and Catalysis. 125(2), 743–756. DOI: 10.1007/s11144-018-1429-6
  2. Aberkouks, A., Mekkaoui, A.A., Boualy, B., Houssame, S.E., Ali, M.A., Firdoussi, L.E. (2018). Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant. Advanced Materials Science. Engineering. 2018, 7, DOI: 10.1155/2018/2716435
  3. Qi, B., Lu, X.H., Zhou, D., Xia, Q.H., Tang, Z.R., Fang, S.Y., Pang, T., Dong, Y.L., (2010). Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites. Journal of Molecular Catalysis A: Chemical, 322(1–2), 73-79. DOI: 10.1016/j.molcata.2010.02.019
  4. Zhan, W., Guo, Y., Wang, Y., Guo, Y., Liu, Y.X., Wang, Y., Zhang, Z., Lu, G. (2009), Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. Journal of Physical Chemistry C, 113(17), 7181-7185. DOI: 10.1021/jp8101095
  5. Nurhadi, M., Kusumawardani, R., Wirawan, T., Sumari, S., Yuan, L.S., Nur, H., (2021) Catalytic Performance of TiO2–Carbon Mesoporous_Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 88-96. DOI: 10.9767/bcrec.16.1.9729.88-96
  6. Liu, L., He, W., Fang, Z., Yang, Z., Guo, K., Wang, Z. (2020), From Core−Shell to Yolk−Shell: Improved Catalytic Performance toward CoFe2O4@ Hollow@ Mesoporous TiO2 toward Selective Oxidation of Styrene. Industrial and Engineering Chemistry Research, 59(45), 19938–19951. DOI: 10.1021/acs.iecr.0c03884
  7. Sakthivel, B., Josephine, D.S.R., Sethuraman, K., Dhakshinamoorthy, A. (2018). Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catalysis Communications, 108, 41-45. DOI: 10.1016/j.catcom.2018.01.029
  8. Milovac, D., Weigand, I., Kovaˇci´c, M., Ivankovi´c, M., Ivankovi´c, H. (2018). Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Process Applied Ceramics, 12(2), 136-142. DOI: 10.2298/PAC1802136M
  9. Ghosh, S., Acharyya, S.S., Kumar, M., Bal, R. (2015). One-pot preparation of nanocrystalline Ag/WO3 catalyst for the selective oxidation of styrene. Royal Society of Chemistry Advances. 5(47), 37610-37616. DOI: 10.1039/C5RA03803K
  10. Zhang, Y., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q. (2021). Catalytic oxidation of styrene and its reaction mechanism consideration over bimetal modified phosphotungstates. Molecular Catalysis, 515, 111940. DOI: 10.1016/j.mcat.2021.111940
  11. Zhang, D-H., Li, H-B., Li, G-D., Chen, J-S. (2009). Magnetically recyclable Ag-ferrite catalysts: general synthesis and support effects in the epoxidation of styrene. Dalton Transactions. 47, 10527 - 10533. DOI: 10.1039/b915232f
  12. Zou, H., Xiao, G., Chen, K., Peng, X. (2018). Noble metal free V2O5/g-C3N4 composite for selective oxidation of olefins using hydrogen peroxide as oxidant. Dalton Transactions. 10, 1039-1047. DOI: 10.1039/C8DT02765J
  13. Wang, H., Qian, W., Chen, J., Wu, Y., Xu, X., Wang, J., Kong, Y. (2014). Spherical V-MCM-48: the synthesis, characterization and catalytic performance in styrene oxidation. Royal Society of Chemistry Advances. 4, 50832–50839. DOI: 10.1039/c4ra08333d
  14. Wan, Y., Liang, Q., Li, Z., Xu, S., Hu, X., Liu, Q., Lu, D. (2015). Significant improvement of styrene oxidation over zincphthalocyanine supported on multi-walled carbon nanotubes. Journal of Molecular Catalysis A: Chemical 402, 29-36. DOI: 10.1016/j.molcata.2015.03.010
  15. Ramanathan, R., Sugunan, S. (2007). Styrene oxidation by H2O2 using Ni–Gd ferrites prepared by co-precipitation method. Catalysis Communications, 8, 1521–6. DOI: 10.1016/j.catcom.2006.12.021
  16. Tanglumlert, W., Imae, T., White, T. J., Wongkasemjit, S. (2009). Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catalysis Communications, 10, 1070-1073. DOI: 10.1016/j.catcom.2009.01.002
  17. Thao, N.T., Trung, H.H. (2014). Selective oxidation of styrene over Mg–Co–Al hydrotalcite like-catalysts using air as oxidant Catalysis Communications, 45, 153-157. DOI: 10.1016/j.catcom.2013.11.004
  18. Cai, X., Wang, H., Zhang, Q., Tong, J. (2014). Selective oxidation of styrene efficiently catalyzed by spinel Mg–Cu ferrite complex oxides in water. Journal Sol-Gel Science Technology, 69, 33-39. DOI: 10.1007/s10971-013-3181-8
  19. Jiang, T., Gao, G., Yang, C., Mao, Y., Fang, M., Zhao, Q. (2020). Catalytic Activity of Ag-Co-MCM-41 for Liquid-Phase Selective Oxidation of Styrene to Benzaldehyde. Journal of Nanoscience and Nanotechnology. 20, 1670–7. DOI: 10.1166/jnn.2020.17137
  20. Sun, W., Hu, J. (2016). Oxidation of styrene to benzaldehyde with hydrogen peroxide in the presence of catalysts obtained by the immobilization of H3PW12O40 on SBA-15 mesoporous material. Reaction Kinetic Mechanism and Catalysis, 119(1), 305-318. DOI: 10.1007/s11144-016-1024-7
  21. Wirawan, T., Nurhadi, M., Rahmadani, A., Prananto, Y. P., Zhu, Z., Lai, S. Y., Nur, H. (2023). One Pot Synthesis of Calcium Sulfate Hemihydrate from Fishbone-derived Carbon(Article). Bulletin of Chemical Reaction Engineering & Catalysis, 18(3), 398-406. DOI: 10.9767/bcrec.19515
  22. Yang, Q., Li, C., Yuan, S., Li, J., Ying, P., Xin, Q., Weiding, S. (1999). Epoxidation of Styrene on a Novel Titanium–Silica Catalyst Prepared by Ion Beam Implantation. Journal of Catalysis, 183(1), 128-130. DOI: 10.1006/jcat.1999.2406
  23. Iglesias, J., Melero, J. A., Sánchez-Sánchez, M. (2010). Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous and Mesoporous Materials, 132(1–2), 112-20. DOI: 10.1016/j.micromeso.2010.02.006
  24. Modak, A., Nandi, M., Bhaumik, A. (2012). Titanium containing periodic mesoporous organosilica as an efficient catalyst for the epoxidation of alkenes. Catalysis Today, 198(1), 45-51. DOI: 10.1016/j.cattod.2012.03.074
  25. Liu, C., Huang, J., Sun, D., Zhou, Y., Jing, X., Du, M., Wang, H., Li, Q. (2013). Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation. Applied Catalysis A: General, 459, 1-7. DOI: 10.1016/j.apcata.2013.03.013
  26. Nurhadi, M., Efendi, J., Ling, L. S., Mahlia, T. M. I., Siong, H. C., Yuan, L. S., Chandren, S., Nur, H. (2014). Titanium Dioxide-Supported Sulfonated Low Rank Coal as Catalysts in the Oxidation of Styrene with Aqueous Hydrogen Peroxide. Jurnal Teknologi, 69(5), 71-79. DOI: 10.11113/jt.v69.3208
  27. Nurhadi, M. (2017). Utilization Low Rank Coal Bottom Ash as TiO2 Suport for Oxidation Catalyst of Styrene with Hydrogen Peroxide Aqueous. Key Engineering Materials, 733,12-16. DOI: 10.4028/www.scientific.net/KEM.733.12
  28. Nurhadi, M. (2017). Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis. 12(1), 55-61. DOI: 10.9767/bcrec.12.1.501.55-61
  29. Nurhadi, M. (2017). Epoxidation of 1-Octene with hydrogen peroxide aqueous catalyzed by titania supported sulfonated coal. AIP Conference Proceedings. 1813(1), 030001. DOI: 10.1063/1.4975964
  30. Nurhadi, M., Chandren, S., Yuan, L. S., Ho, C. S., Mahlia, T. M. I., Nur, H. (2017). Titania-Loaded Coal Char as Catalyst in Oxidation of Styrene with Aqueous Hydrogen Peroxide. International Journal of Chemical Reactor Engineering. 15(1), 45-55. DOI: 10.1515/ijcre-2016-0088
  31. Vel, S, Josephine, R, Raman, S, Dhakshinamoorthy, A. (2018). Oxidation of styrene using TiO2 -graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catalysis Communications, 108, 41-45. DOI: 10.1016/j.catcom.2018.01.029
  32. Ito, S., Kon, Y., Nakashima, T., Hong, D., Konno, H., Ino, D., Sato, K. (2019). Titania-Catalyzed H2O2 Thermal Oxidation of Styrenes to Aldehydes. Molecules, 24(2520), 1-9. DOI: 10.3390/molecules24142520
  33. Andrade, M.A., Martins, L.M.D.R.S. (2021). Selective Styrene Oxidation to Benzaldehyde over Recently Developed Heterogeneous Catalysts Molecules, 26, 1680. DOI: 10.3390/molecules26061680
  34. Xie L, Wang H, Lu B, Zhao J, Cai Q. (2018). Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. Reaction Kinetics Mechanism and Catalysis, 125, 743–756. DOI: 10.1007/s11144-018-1429-6
  35. Kusumawardani, R., Nurhadi, M., Wirawan, T., Prasetyo, A., Agusti, N.N., Lai, S. Y., Nur, H. (2022). Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon. Bulletin of Chemical Reaction Engineering & Catalysis. 17(1), 194-204. DOI: 10.9767/bcrec.17.1.13133.194-204
  36. Liu, C., Zhao, Q., Wang, Y., Shi, P., Jiang, M. (2016). Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Applied Surface Science, 360, 263-269. DOI: 10.1016/j.apsusc.2015.11.032
  37. Feng, X., Zhang, Y., Wang, G., Miao, M., Shi, L. (2015). Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking. Powder Technology, 271, 1-6. DOI: 10.1016/j.powtec.2014.11.015
  38. Dang, L., Nai, X., Zhu, D., Jing, Y., Liu, X., Dong, Y., Li, W. (2014). Study on the mechanism of surface modification of magnesium oxysulfate whisker. Applied Surface Science. 317, 325-331. DOI: 10.1016/j.apsusc.2014.07.205
  39. Duprey, E., Beaunier, P., Springuel-Huet, M.A., Bozon-Verduraz, F., Fraissard, J., Manoli, J.M, Brégeault, J.M. (1997). Characterization of Catalysts Based on Titanium Silicalite, TS-1, by Physicochemical Techniques. Journal of Catalysis, 165(1), 22-32. DOI: 10.1006/jcat.1997.1462
  40. Nur, H. (2006). Modification of titanium surface species of titania by attachment of silica nanoparticles. Materials Science and Engineering B. 133, 49-54. DOI: 10.1016/j.mseb.2006.05.003
  41. Nurhadi, M., Efendi, J., Lee, S.L., Mahlia, T.M.I., Chandren, S., Ho, C.S., Nur, H. (2015). Utilization of low rank coal as oxidation catalyst by controllable removal of its carbonaceous component. Journal of the Taiwan Institute of Chemical Engineers. 46(0), 183-190. DOI: 10.1016/j.jtice.2014.09.012
  42. Nurhadi, M., Kusumawardani, R., Wirawan, T., Lai, S.Y, Nur, H. (2023). Synergistic Ti-Fe Oxides on Fishbone-Derived Carbon Sulfonate: Enhanced Styrene Oxidation Catalysis. Indonesian Journal of Chemistry. 23(6), 1514-1524. DOI: 10.22146/ijc.80667
  43. Tang, B, Lu, X-H, Zhou, D., Lei, J., Niu, Z-H., Fan, J., Xia, Q-H. (2012). Highly efficient epoxidation of styrene and α-pinene with air over Co2+-exchanged ZSM-5 and Beta zeolites. Catalysis Communications, 21, 68-71. DOI: 10.1016/j.catcom.2012.01.029

Last update:

No citation recorded.

Last update:

No citation recorded.