skip to main content

CuAl-LDH Modified with Filamentous Macroalgae for Anionic Dyes Removal: A Study on Selectivity, Adsorption Efficiency, and Regeneration

1Doctoral Program of Environmental Sciences, Graduate School of Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia

2Research Centre of Inorganic Materials and Coordination Complexes, Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia

3Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, South Sumatera, 30862, Indonesia

4 Department of Chemical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, South Sumatera, 30862, Indonesia

5 Master Program of Material Science, Graduate School of Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia

View all affiliations
Received: 1 Oct 2024; Revised: 30 Oct 2024; Accepted: 30 Oct 2024; Available online: 2 Nov 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Continuous modifications of Layered Double Hydroxides (LDH) materials are essential to enhance their structural stability and improve their capacity for pollutant adsorption, addressing the need for more effective remediation strategies in environmental applications. This research study has proposed the preparation of CuAl-LDH supported filamentous macroalgae of Spirogyra sp. (CuAl-LDH/SA) via coprecipitation and hydrothermal methods. The prepared CuAl-LDH/SA composites were investigated for the adsorption of direct yellow 12 (DY) and remazol red (RR) dyes in batch mode experiments. The structure and morphology of the prepared CuAl-LDH/SA were identified by X-ray Diffraction (XRD), Fourier Transform Infra Red (FT-IR), (Brunauer-Emmett-Teller) BET surface area, Thermogravimetry / Differential Thermal Analyzer (TG/DTA), and Scanning Electron Microscope (SEM). For the adsorption process, the effects of initial pH, contact time, initial concentration, temperature, adsorption selectivity, and adsorbent regeneration, as well as kinetics, isotherms, and thermodynamics were studied. The adsorption selectivity test resulted in the RR dye being more selective compared to DY. The maximum capacities for RR adsorption were 72.464 mg/g (pH = 2, 150 min, 303 K). CuAl-LDH/SA can be regenerated for 4 cycles with a percent removal of 29.32%. The adsorption process followed the intraparticle diffusion kinetics model and Langmuir isotherm. Thermodynamic studies showed that the adsorption of RR using CuAl-LDH/SA was endothermic and spontaneous. The results of this study indicate that CuAl-LDH/SA composite material shows potential material in the removal of anionic dyes from aqueous solutions. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: CuAl-LDH; Spirogyra algae; anionic dyes; selectivity; regeneration
Funding: Universitas Sriwijaya

Article Metrics:

  1. Jung, S., Jung, M., Yoon, J., Kim, J., Jin, H., Won, H. (2024). Chitosan-derived activated carbon / chitosan composite beads for adsorptive removal of methylene blue and acid orange 7 dyes. Reactive and Functional Polymers, 204(August), 106028. DOI: 10.1016/j.reactfunctpolym.2024.106028
  2. Tian, W., Zhou, H., Liu, Y., Yang, Z., Li, Q., Qi, F., Yu, Y. (2024). A robust polypyrrole nanofibrous membrane for versatile applications: Oil-water separation and dye removal. Journal of Environmental Chemical Engineering, 12(3), 113109. DOI: 10.1016/j.jece.2024.113109
  3. Wang, H., Chen, C., Dai, K., Xiang, H., Kou, J., Guo, H., Ying, H., Chen, X., Wu, J. (2024). Selective adsorption of anionic dyes by a macropore magnetic lignin-chitosan adsorbent. International Journal of Biological Macromolecules, 269(P2), 131955. DOI: 10.1016/j.ijbiomac.2024.131955
  4. Krupková, O., Dušek, L., Cuhorka, J., Soares, G., Kuchtová, G., Mikulášek, P., Bendová, H. (2024). Removal of textile dye reactive blue 49 from wastewater and dye baths by membrane separation and subsequent photo-Fenton reaction, UV-C and UV-C/H2O2. Journal of Water Process Engineering, 65(June) DOI: 10.1016/j.jwpe.2024.105735
  5. Duan, Y., Zhao, J., Qiu, X., Deng, X., Ren, X., Ge, W., Yuan, H. (2022). Coagulation performance and floc properties for synchronous removal of reactive dye and polyethylene terephthalate microplastics. Process Safety and Environmental Protection, 165(June), 66–76. DOI: 10.1016/j.psep.2022.07.010
  6. Muniasamy, S.K., Alobaid, A.A., Warad, I., Ravindiran, G. (2023). Removal of Brilliant Green dye in aqueous solution using synthetic coagulation and flocculation technique. Desalination and Water Treatment, 314, 231–240. DOI: 10.5004/dwt.2023.30093
  7. Feng, X., Li, X., Su, B. (2023). Photocatalytic degradation performance of antibiotics by peanut shell biochar anchored NiCr-LDH nanocomposites fabricated by one-pot hydrothermal protocol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 666(March), 131337. DOI: 10.1016/j.colsurfa.2023.131337
  8. Li, X. fang, Li, R. xian, Wang, K. xin, Feng, X. qiang (2023). Highly synergic adsorption and photocatalytic degradation of walnut shell biochar/NiCr-layered double hydroxides composite for Methyl orange. Journal of Industrial and Engineering Chemistry, 126, 270–282. DOI: 10.1016/j.jiec.2023.06.017
  9. Wijaya, A., Zahara, Artha, Zaqiya, Siregar, P.M.S.B.N., Ahmad, N., Amri, A., Palapa, N.R., Mohadi, R., Lesbani, A. (2024). Cellulose-supported Ni/Al Layered Double Hydroxide (LDH) as Unique Adsorbents for Malachite Green Dye Removal in Aqueous Solutions. Iranian Journal of Chemistry and Chemical Engineering, 43(4), 1566–1578. DOI: 10.30492/ijcce.2024.1983141.5779
  10. Amri, A., Wibiyan, S., Wijaya, A., Ahmad, N., Mohadi, R., Lesbani, A. (2024). Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite. Bulletin of Chemical Reaction Engineering & Catalysis, 19(2), 181–189. DOI: 10.9767/bcrec.20121
  11. Li, Y., Liu, H., Nie, R., Li, Y., Li, Q., Lei, Y., Guo, M., Zhang, Y. (2024). Highly efficient adsorption of anionic dyes on a porous graphene oxide nanosheets/chitosan composite aerogel. Industrial Crops and Products, 220(January), 119146. DOI: 10.1016/j.indcrop.2024.119146
  12. Mujtaba, G., Hai, A., Ul Hassan Shah, M., Ullah, A., Anwar, Y., Shah, F., Daud, M., Hussain, A., Ahmed, F., Banat, F. (2024). Potential of Capparis decidua plant and eggshell composite adsorbent for effective removal of anionic dyes from aqueous medium. Environmental Research, 247(December 2023), 118279. DOI: 10.1016/j.envres.2024.118279
  13. Badaruddin, M., Ahmad, N., Fitri, E.S., Lesbani, A., Mohadi, R. (2022). Hydrochar and Humic Acid as Template of ZnAl Layered Double Hydroxide for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 492–499. DOI: 10.26554/sti.2022.7.4.492-499
  14. Palapa, N.R., Amri, A., Hanifah, Y. (2023). Potential Indonesian Rice Husk for Wastewater Treatment Agricultural Waste Preparation and Dye Removal Application. Indonesian Journal of Environmental Management and Sustainability, 7(4), 160–165. DOI: 10.26554/ijems.2023.7.4.160-165
  15. Taher, T., Munandar, A., Mawaddah, N., Wisnubroto, M.S., Mega, P., Bahar, S., Siregar, N., Rahayu, N., Lesbani, A., Gusti, Y. (2023). Synthesis and characterization of montmorillonite – Mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorganic Chemistry Communications, 147(October 2022), 110231
  16. Ahmad, N., Marlan, A.R., Negara, S.P.J. (2024). Insight of Anionic Dyes Adsorption from Their Aqueous Solutions onto MgAl LDH/Lignin: Characterization and Isotherm Studies. Indonesian Journal of Material Research, 2(2), 40–46
  17. Normah, N., Lesbani, A. (2024). Comparison of LDH-Organic/Inorganic Compound Modified Materials as Adsorbents for Heavy Metal Adsorption: Characteristic Structure and Adsorption Mechanism. Bulletin of Chemical Reaction Engineering & Catalysis, 19(2), 327–339. DOI: 10.9767/bcrec.20160
  18. Dolfini, N., Viotti Moreira, P.V., Moreira, W.M., Scheufele, F.B., Arroyo, P.A., Pereira, N.C. (2024). LDH/Alginate composite for anionic dye adsorption: synthesis, mechanisms and modeling. Separation and Purification Technology, 351(May) DOI: 10.1016/j.seppur.2024.128073
  19. Ahmad, N., Wijaya, A., Arsyad, F.S., Royani, I., Lesbani, A. (2024). Layered double hydroxide-functionalized humic acid and magnetite by hydrothermal synthesis for optimized adsorption of malachite green. Kuwait Journal of Science, 51(2), 100206. DOI: 10.1016/j.kjs.2024.100206
  20. Cruz, E.D., Missau, J., Collinson, S.R., Tanabe, E.H., Bertuol, D.A. (2023). Efficient removal of congo red dye using activated lychee peel biochar supported Ca-Cr layered double hydroxide. Environmental Nanotechnology, Monitoring and Management, 20(May), 100835. DOI: 10.1016/j.enmm.2023.100835
  21. Palapa, N.R., Taher, T., Rahayu, B.R., Mohadi, R., Rachmat, A., Lesbani, A. (2020). CuAl LDH/Rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 525–537. DOI: 10.9767/bcrec.15.2.7828.525-537
  22. Han, W., Hao, H., Zhang, Q., Shao, Z. (2023). Journal of Environmental Chemical Engineering Activated biochar loaded CuAl-layered double hydroxide composite for the removal of aniline aerofloat in wastewater : Synthesis , characterization , and adsorption mechanism. Journal of Environmental Chemical Engineering, 11(2), 109293. DOI: 10.1016/j.jece.2023.109293
  23. Normah, N., Juleanti, N., Mega, P., Bahar, S., Siregar, N., Wijaya, A. (2021). Size Selectivity of Anionic and Cationic Dyes Using LDH Modified Adsorbent with Low-Cost Rambutan Peel to Hydrochar. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 869–880. DOI: 10.9767/bcrec.16.4.12093.869-880
  24. Li, X., Liu, W., Zhang, J., Wang, Z., Guo, Z., Ali, J., Wang, L., Yu, Z., Zhang, X., Sun, Y. (2024). Effective removal of microplastics by filamentous algae and its magnetic biochar : Performance and mechanism. Chemosphere, 358(February), 142152. DOI: 10.1016/j.chemosphere.2024.142152
  25. Jiat, X., Chyuan, H., Ooi, J., Ling, K., Chai, T., Chen, W., Sik, Y. (2022). Engineered macroalgal and microalgal adsorbents : Synthesis routes and adsorptive performance on hazardous water contaminants. Journal of Hazardous Materials, 423(PA), 126921. DOI: 10.1016/j.jhazmat.2021.126921
  26. Liu, Y., Zhao, J., Chen, S., Yao, J., Liu, J. (2024). Removal of arsenic from realgar-containing water by Spirogyra: Implications for in situ remediation of arsenic in the mine area. Applied Geochemistry, 160(December 2023), 105873. DOI: 10.1016/j.apgeochem.2023.105873
  27. Yahya, M.D., Muhammed, I.B., Obayomi, K.S., Olugbenga, A.G., Abdullahi, U.B. (2020). Optimization of fixed bed column process for removal of Fe(II) and Pb(II) ions from thermal power plant effluent using NaoH-rice husk ash and Spirogyra. Scientific African, 10, e00649. DOI: 10.1016/j.sciaf.2020.e00649
  28. Riaz, S., Rehman, A. ur, Akhter, Z., Najam, T., Hossain, I., Karim, M.R., Assiri, M.A., Shah, S.S.A., Nazir, M.A. (2024). Recent advancement in synthesis and applications of layered double hydroxides (LDHs) composites. Materials Today Sustainability, 27(May), 100897. DOI: 10.1016/j.mtsust.2024.100897
  29. Bekirogullari, M., Abut, S., Duman, F., Hansu, T.A. (2024). Dual-function macroalgae biochar: Catalyst for hydrogen production and electrocatalyst. Fuel, 362(December 2023), 130920. DOI: 10.1016/j.fuel.2024.130920
  30. Salim, M.H., Kassab, Z., Ablouh, E. houssaine, Sehaqui, H., Aboulkas, A., Bouhfid, R., Qaiss, A.E.K., El Achaby, M. (2022). Manufacturing of macroporous cellulose monolith from green macroalgae and its application for wastewater treatment. International Journal of Biological Macromolecules, 200(September 2021), 182–192. DOI: 10.1016/j.ijbiomac.2021.12.153
  31. Han, W., Hao, H., Zhang, Q., Shao, Z. (2023). Activated biochar loaded CuAl-layered double hydroxide composite for the removal of aniline aerofloat in wastewater: Synthesis, characterization, and adsorption mechanism. Journal of Environmental Chemical Engineering, 11(2), 109293. DOI: 10.1016/j.jece.2023.109293
  32. Khodakarami, M., Dehghan, G., Rashtbari, S., Amini, M. (2024). Catalytic removal of malachite green from aqueous solution by a peroxidase-mimicking Cu-Al layered double hydroxide nanoparticle: Synthesis, characterization, and application. Applied Catalysis A: General, 670(January), 119563. DOI: 10.1016/j.apcata.2024.119563
  33. Zhang, J., Lu, W., Zhan, S., Qiu, J., Wang, X., Wu, Z., Li, H., Qiu, Z., Peng, H. (2021). Adsorption and mechanistic study for humic acid removal by magnetic biochar derived from forestry wastes functionalized with Mg / Al-LDH. Separation and Purification Technology, 276(June), 119296. DOI: 10.1016/j.seppur.2021.119296
  34. de Jesus, A.S., Ferreira, G.M.D., Ferreira, G.M.D., Souza, T.F., Siqueira, K.P.F., Nogueira, A.E., Barbosa Mageste, A. (2024). Composite of Organo-LDH and biochar for diclofenac sodium removal from aqueous solutions. Materials Chemistry and Physics, 328(August) DOI: 10.1016/j.matchemphys.2024.129919
  35. Zhu, R., Yuan, W., Cheng, J., Qiu, X. (2024). FeAl-LDH-modified biochar (FeAl-LDH@BC): A high-efficiency passivator for hexavalent chromium (Cr(VI)) reduction and immobilization in contaminated soil. Sustainable Chemistry for the Environment, 8(July), 100169. DOI: 10.1016/j.scenv.2024.100169
  36. Araújo, Y.M. De, Medeiros, R., Heriberto, J., Tinôco, J.D. (2024). Functionalized graphene oxide as an adsorbent material for endocrine disruptor 4-octylphenol. Desalination and Water Treatment, 318(April), 100346. DOI: 10.1016/j.dwt.2024.100346
  37. Song, G., Fan, W., Zhang, J., Xue, T., Shi, Y., Sun, Y., Ding, G. (2024). Applied Surface Science Adsorption of anionic dyes from aqueous solutions by a novel CTAB / MXene / carbon nanotube composite : Characterization , experiments , and theoretical analysis. Applied Surface Science, 661(April), 160036. DOI: 10.1016/j.apsusc.2024.160036
  38. Abdelmegeed, A.F., Sayed, M., Abbas, M., Abdel Moniem, S.M., Farag, R.S., Sayed, A.Z., Naga, S.M. (2024). Hydroxyapatite-magnetite nanocomposites: Synthesis and superior adsorption properties for lead ion removal, with insights into intraparticle diffusion, kinetic modeling, and phase dependency. Ceramics International, 50(19), 36074–36087. DOI: 10.1016/j.ceramint.2024.06.420
  39. Farhat, Z., Kumar, A., Das, C. (2024). Fabrication of used-tea embedded alginate beads for cationic dye remediation: Synergistic effect of surface adsorption and intraparticle diffusion. Surfaces and Interfaces, 51(June), 104601. DOI: 10.1016/j.surfin.2024.104601
  40. El Boraei, N.F., Ibrahim, M.A.M. (2019). Black binary nickel cobalt oxide nano-powder prepared by cathodic electrodeposition; characterization and its efficient application on removing the Remazol Red textile dye from aqueous solution. Materials Chemistry and Physics, 238(November 2018), 121894. DOI: 10.1016/j.matchemphys.2019.121894
  41. Abdel-Wahed, M.S., El-Kalliny, A.S., Shehata, F.A., Abd El-Aty, A.M., Gad-Allah, T.A. (2023). One-pot green synthesis of magnetic adsorbent via Anabaena sphaerica and its performance towards Remazol Red dye removal from aqueous media. Chemical Engineering Science, 279(February), 118939. DOI: 10.1016/j.ces.2023.118939
  42. El, N.F., Ibrahim, M.A.M., Naghmash, M.A. (2022). Journal of Physics and Chemistry of Solids Nanocrystalline FeNi alloy powder prepared by electrolytic synthesis ; characterization and its high efficiency in removing Remazol Red dye from aqueous solution. Journal of Physics and Chemistry of Solids, 167(February), 110714. DOI: 10.1016/j.jpcs.2022.110714
  43. Albertina, C., Debrassi, A., Nedelko, N., Anna, S. (2019). Adsorption of the dye Remazol Red 198 ( RR198 ) by O -carboxymethylchitosan- N -lauryl / c -Fe 2 O 3 magnetic nanoparticles. 3444–3453. DOI: 10.1016/j.arabjc.2015.08.028
  44. Costa, J.A.S., Paranhos, C.M. (2019). Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Sciences, 1(5), 1–8. DOI: 10.1007/s42452-019-0436-1
  45. Gürses, A., Güneş, K., Şahin, E., Açıkyıldız, M. (2023). Investigation of the removal kinetics, thermodynamics and adsorption mechanism of anionic textile dye, Remazol Red RB, with powder pumice, a sustainable adsorbent from waste water. Frontiers in Chemistry, 11(June), 1–14. DOI: 10.3389/fchem.2023.1156577
  46. Sithole, T. (2024). South African Journal of Chemical Engineering A review on regeneration of adsorbent and recovery of metals : Adsorbent disposal and regeneration mechanism. South African Journal of Chemical Engineering, 50(July), 39–50. DOI: 10.1016/j.sajce.2024.07.006
  47. Vakili, M., Cagnetta, G., Deng, S., Wang, W., Gholami, Z., Gholami, F., Dastyar, W., Mojiri, A., Blaney, L. (2024). Regeneration of exhausted adsorbents after PFAS adsorption : A critical review. Journal of Hazardous Materials, 471(April), 134429. DOI: 10.1016/j.jhazmat.2024.134429
  48. Suhaimi, A., Abdulhameed, A.S., Jawad, A.H., Yousef, T.A., Al Duaij, O.K., ALOthman, Z.A., Wilson, L.D. (2022). Production of large surface area activated carbon from a mixture of carrot juice pulp and pomegranate peel using microwave radiation-assisted ZnCl2 activation: An optimized removal process and tailored adsorption mechanism of crystal violet dye. Diamond and Related Materials, 130(October), 109456. DOI: 10.1016/j.diamond.2022.109456
  49. Peighambardoust, S.J., Imani Zardkhaneh, S., Foroughi, M., Foroutan, R., Azimi, H., Ramavandi, B. (2024). Effectiveness of polyacrylamide-g-gelatin/ACL/Mg-Fe LDH composite hydrogel as an eliminator of crystal violet dye. Environmental Research, 258(May), 119428. DOI: 10.1016/j.envres.2024.119428

Last update:

No citation recorded.

Last update:

No citation recorded.