skip to main content

Photoreduction of CO2 to Formic Acid in Aquatic Phase Using Layer Double Hydroxide (LDH) Catalyst

1Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, 40132, Indonesia

2Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Let. Jend. Purn. Dr. (HC) Mashudi No.1, Sumedang, 45363, Indonesia

3Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, 40132, Indonesia

Received: 18 Aug 2024; Revised: 1 Dec 2024; Accepted: 2 Dec 2024; Available online: 3 Dec 2024; Published: 30 Dec 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increasing accumulation of CO2, the primary greenhouse gas (GHG), in the Earth's atmosphere has caused significant environmental problems and adverse climate change. Photoreduction offers promising method to convert CO2 into high value chemical compounds, such as formic acid, which can serve as a hydrogen carrier. The process of photoreduction efficiency can be enhanced by using photocatalyst capable of operating across two distinct photosystems each having a different spectrum based on the sensitivity of light. This study aims to investigate the impact of the photocatalyst preparation conditions on the activity of the resulting photocatalyst and identify which is the most effective one on the formic acid production. Photocatalysts based on Layered Double Hydroxide (LDH) composed of zinc and chromium was synthesized, resulting in Zn-Cr LDH, which was subsequently enhanced by incorporating Cu and Cu₂O. The operating temperature varied at 60 ℃ and 100 ℃. The highest yield of formic acid of 21,62 μmol.gcat-1.hr-1 was obtained at a reaction temperature of 100 ℃ using 0.3Cu@Zn-Cr LDH. This photocatalyst shows increased activity when the reaction temperature is increased to 60 ℃ and 100 ℃. In contrast, 0.3Cu2O@Zn-CrLDH showed a decreased activity at the elevated temperatures. This discrepancy attributed to the self-oxidation mechanism of Cu and Cu2O; while the oxidation of 0.3Cu@Zn-CrLDH results in Cu2O which retains photocatalytic activity, the oxidation of 0.3Cu2O@Zn-CrLDH leads to inactive CuO. This study provides valuable insight into the material design and demonstrates the potential of Cu-modified Zn-Cr LDH for sustainable CO2 reduction applications. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Photocatalyst; Photoreduction; Formic Acid; Carbon Dioxide; Layer Double Hydroxide

Article Metrics:

  1. Wennersten, R., Sun, Q., Li, H. (2015) The future potential for Carbon Capture and Storage in climate change mitigation – an overview from perspectives of technology, economy and risk, J. Clean. Prod. 103, 724–736. DOI: 10.1016/j.jclepro.2014.09.023
  2. Zhang, X., Guo, S.X., Gandionco, K.A., Bond, A.M., Zhang, J. (2020) Electrocatalytic carbon dioxide reduction: from fundamental principles to catalyst design, Mater. Today Adv. 7, 100074. DOI: 10.1016/j.mtadv.2020.100074
  3. Daiyan, R., Lu, X., Ng, Y.H., Amal, R. (2017) Liquid Hydrocarbon Production from CO2 : Recent Development in Metal-Based Electrocatalysis, ChemSusChem. 10, 4342–4358. DOI: 10.1002/cssc.201701631
  4. Marpani, F., Pinelo, M., Meyer, A.S. (2017) Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems, Biochem. Eng. J. 127, 217–228. DOI: 10.1016/j.bej.2017.08.011
  5. Gao, J., Jia, C., Liu, B. (2017) Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts, Catal. Sci. Technol. 7, 5602–5607. DOI: 10.1039/c7cy01549F
  6. Aresta, M., Dibenedetto, A., Angelini, A. (2013) The changing paradigm in CO2 utilization, J. CO2 Util. 3–4, 65–73. DOI: 10.1016/j.jcou.2013.08.001
  7. Olah, G.A., Prakash, G.K.S., Goeppert, A. (2011) Anthropogenic chemical carbon cycle for a sustainable future, J. Am. Chem. Soc. 133, 12881–12898. DOI: 10.1021/ja202642y
  8. Enthaler, S., Von Langermann, J., Schmidt, T. (2010) Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?, Energy Environ. Sci. 3, 1207–1217. DOI: 10.1039/B907569K
  9. Wang, W.H., Himeda, Y., Muckerman, J.T., Manbeck, G.F., Fujita, E. (2015) CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction, Chem. Rev. 115, 12936–12973. DOI: 10.1021/acs.chemrev.5b00197
  10. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O., Pérez-Ramírez, J. (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci. 6, 3112–3135. DOI: 10.1039/C3EE41272E
  11. Kianička, J., Čík, G., Šeršeň, F., Špánik, I., Sokolík, R., Filo, J. (2019) Photo-Reduction of CO₂ by VIS Light on Polythiophene-ZSM-5 Zeolite Hybrid Photo-Catalyst, Molecules. 24, DOI: 10.3390/molecules24050992
  12. Lingampalli, S.R., Ayyub, M.M., Rao, C.N.R. (2017) Recent Progress in the Photocatalytic Reduction of Carbon Dioxide, ACS Omega. 2, 2740–2748. DOI: 10.1016/j.cattod.2017.10.006
  13. Yang, Z.-z., Wei, J.-j., Zeng, G.-m., Zhang, H.-q., Tan, X.-f., Ma, C., Li, X.-c., Li, Z.-h. (2019) Chang Zhang, A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2, Coord. Chem. Rev. 386, 154–182. DOI: 10.1016/j.ccr.2019.01.018
  14. Parida, K., Mohapatra, L. (2012) Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light, Dalton Trans. 41, 1173–1178. DOI: 10.1039/C1DT10957J
  15. Bolton, J.R. (1978) Solar fuels: The production of energy-rich compounds by the photochemical conversion and storage of solar energy, Science. 202, 705–711. DOI: 10.1126/science.202.4369.705
  16. Shang, Y., Sun, D., Shao, Y., Zhang, D., Guo, L., Yang, S. (2012) A Facile Top-Down Etching To Create a Cu2O Jagged Polyhedron Covered with Numerous {110} Edges and {111} Corners with Enhanced Photocatalytic Activity, Chem. – A Eur. J. 18, 14261–14266. DOI: 10.1002/chem.201201882
  17. Lu, M., Zhang, J., Yao, Y., Sun, J., Wang, Y., Lin, H. (2018) Renewable energy storage via efficient reversible hydrogenation of piperidine captured CO2, Green Chem. 20, 4292–4298. DOI: 10.1039/C8GC00954F
  18. Bookin, A.S., Cherkashin, V.I., Drits, V.A. (1993) Reinterpretation of the X-Ray Diffraction Patterns of Stichtite and Reevesite, Clays Clay Miner. 41, 631–634. DOI: 10.1346/CCMN.1993.0410514
  19. Kloprogge, J.T., Hickey, L., Frost, R.L. (2005) The effect of varying synthesis conditions on zinc chromium hydrotalcite: a spectroscopic study, Mater. Chem. Phys. 89, 99–109. DOI: 10.1016/j.matchemphys.2004.08.035
  20. Rutt, O.J., Williams, G.R., Clarke, S.J. (2006) Reversible lithium insertion and copper extrusion in layered oxysulfides, Chem. Commun. 2869–2871. DOI: 10.1039/B605105G
  21. Neuburger, M.C., von Cuprooxyd, P.d.G. (1931) Cu2O, Zeitschrift Für Phys. 67, 845–850. DOI: 10.1002/zaac.19311970119
  22. Jiang, H., Katsumata, K., Hong, J., Yamaguchi, A., Nakata, K., Terashima, C., Matsushita, N., Miyauchi, M., Fujishima, A. (2018) Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides, Appl. Catal. B Environ. 224, 783–790. DOI: 10.1016/j.apcatb.2017.11.011
  23. Ceulemans, A., Coninckx, B., Görller-Walrand, C., Jacobs, H., Bock, J. (1988) The ligand field spectrum of K3[Cr(OH)6], Chem. Phys. Lett. 150, 127–128. DOI: 10.1016/0009-2614(88)80408-1
  24. Toe, C.Y., Zheng, Z., Wu, H., Scott, J., Amal, R., Ng, Y.H. (2018) Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction, Angew. Chemie Int. Ed. 57, 13613–13617. DOI: 10.1002/anie.201807647
  25. Zheng, C., Cao, J., Zhang, Y., Zhao, H. (2020) Insight into the Oxidation Mechanism of a Cu-Based Oxygen Carrier (Cu → Cu2O → CuO) in Chemical Looping Combustion, Energy & Fuels. 34, 8718–8725. DOI: 10.1021/acs.energyfuels.0C00941
  26. Yahia, E.M., Carrillo-López, A., Barrera, G.M., Suzán-Azpiri, H., Bolaños, M.Q. (2019) Chapter 3. Photosynthesis, Postharvest Physiol. Biochem. Fruits Veg. 47–72. DOI: 10.1016/B978-0-12-813278-4.00003-8
  27. Toporik, H., Dobson, Z., Mazor, Y. (2021) Photosynthesis | The Photosystem I Complex of Oxygenic Photosynthesis, Encycl. Biol. Chem. Third Ed. 2, 191–206. DOI: 10.1016/B978-0-12-819460-7.00253-X
  28. Wu, J., Huang, Y., Ye, W., Li, Y. (2017) CO2 Reduction: From the Electrochemical to Photochemical Approach, Adv. Sci. 4, 1700194. DOI: 10.1002/ADVS.201700194
  29. Wang, C., Ma, B., Xu, S., Li, D., He, S., Zhao, Y., Han, J., Wei, M., Evans, D.G., Duan, X. (2017) Visible-light-driven overall water splitting with a largely-enhanced efficiency over a Cu2O@ZnCr-layered double hydroxide photocatalyst, Nano Energy. 32, 463–469. DOI: 10.1016/j.nanoen.2017.01.010

Last update:

No citation recorded.

Last update:

No citation recorded.