skip to main content

Exploring Alkali Hydroxide Influence on Calcium Titanate Formation for Application in Biodiesel Catalysts

Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai, Thailand

Received: 12 Jun 2024; Revised: 18 Jul 2024; Accepted: 19 Jul 2024; Available online: 22 Jul 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Biodiesel has been recognized as the most widely utilized biofuel around the world due to its significant role in reducing the consumption of crude oil and lowering environmental pollution levels. By serving as a renewable alternative to fossil fuels, bioethanol helps decrease greenhouse gas emissions and contributes to a more sustainable energy future. Traditionally, alkali hydroxides like NaOH and KOH have been mainstays in biodiesel synthesis. However, their overuse can lead to unwanted byproducts and operational complexities. Since calcium titanate can occur at a strong base condition, it presents an alternative avenue worth exploring. In this study, we investigate the influence of alkali hydroxides, namely LiOH, NaOH, and KOH, on the formation of calcium titanate through hydrothermal methods, with varying heating times. We aim to understand how different hydroxides affect the synthesis process and the resultant properties of calcium titanate. We delve into the vibrational properties of Ca‒O‒Ti and Ti‒O bonds using Fourier transform infrared spectroscopy (FTIR), confirming the presence of calcium titanate (JCPDS No.42-0423) through X-ray diffractometry (XRD). This thorough characterization provides insight into the structural integrity and composition of the synthesized materials. Moreover, scanning electron microscopy (SEM) reveals the intriguing cube-like morphology of calcium titanate, offering visual evidence of its unique structure. The fatty acid methyl ester Iimpressively, our results show that calcium titanate synthesized in 7 M NaOH and KOH solutions, heated for 24 hours, emerges as a promising biodiesel catalyst. We observe fatty acid methyl ester provides the percentages of 63.67% and 90.02%, respectively, indicating the catalytic efficacy of these materials in biodiesel production. These findings not only contribute to the understanding of calcium titanate synthesis but also pave the way for a sustainable future in biodiesel production by introducing efficient and eco-friendly catalysts.

Keywords: CaTiO3; alkali hydroxide; biodiesel catalyst; transesterification; hydrothermal
Funding: Faculty of Science, Maejo University

Article Metrics:

  1. Ji, H., Ni, J., Zhao, D., Liu, W. (2022). Application of titanate nanotubes for photocatalytic decontamination in water: challenges and prospects. Environmental Science & Technology. 2. 1015-1038. DOI: 10.1021/acsestengg.1c00451
  2. Ahmadipour, M., Ain, M.F, Ahmad, Z.A. (2016). A short review on copper calcium titanate (CCTO) electro ceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Letters. 8. 291-311. DOI: 10.1007/s40820-016-0089-1
  3. Yan, H., Zhang, D. Qilu., Duon, X., Sheng, X. (2021). A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices. Ceramic International. 47. 5870-5895. DOI: 10.1016/j.ceramint.2020.10.241
  4. Lebedev, A.I. (2009). Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A= Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb). Physics of the Solid State, 51. 341-350. ISSN 1063-7834
  5. Hernández-Hipólito, P., García-Castillejos, M., Martínez-Klimova, E., Juárez-Flores, N., Gómez-Cortés, A., Klimova, T.E. (2014). Biodiesel production with nanotubular sodium titanate as a catalyst. Catalysis Today. 220-222. 4-11. DOI: 10.1016/j.cattod.2013.09.003
  6. Sahani, S., Roy, T., Sharma, Y.C. (2020). Studies on fast and green biodiesel production from an indigenous nonedible indian feedstock using single phase strontium titanate catalyst. Energy Conversion and Management. 203. 112180. DOI: 10.1016/j.enconman.2019.112180
  7. Machorro, López J.J., Lázaro, A.L., Rodriguez-Valadez, F.J., Espejel-Ayala, F. (2020). Synthesis of sodium titanate catalysts using a factorial design for biodiesel production. Environmental Progress Sustainable Energy. 40. 13475. DOI: 10.1002/ep.13475
  8. Ahmad, K., Kumar, P., Mobin, S.M. (2020). Hydrothermally grown novel pyramids of CaTiO3 perovskite as efficient electrode modifiers for sensing applications. Materials Advances. 1. 2003-2009. DOI: 10.1039/D0MA00303D
  9. Ernawati, L., Yusariarta, A.W., Laksono, A.D., Wahtuono, R. A., Widiyandari, H., Rebeka, R., Sitompul, V. (2021). Kinetic studies of methylene blue degradation using CaTiO3 photocatalyst from chicken eggshells. Journal of Physics: Conference Series. 1726. 012017. DOI: 10.1088/1742-6596/1726/1/012017
  10. Yahya, N.Y., Ngadi, N., Wong, S., Hassan, O. (2018). Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate: kinetic and thermodynamic studies. Energy Conversion and Management. 164. 210-218. DOI: 10.1016/j.enconman.2018.03.011
  11. Ali, M.A., Al-Hydary, I.A., Al-Hattab, T.A. (2017). Nano-magnetic catalyst CaO-Fe3O4 for biodiesel production from date palm seed oil. Bulletin of Chemical Reaction Engineering & Catalysis. 12. 460-468. DOI: 10.9767/bcrec.12.3.923.460-468
  12. Yahya, N.Y., Ngadi, N., Jusoh, M., Halim, N.A.A. (2016). Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Conversion and Management. 129. 275-283. DOI: 10.1016/j.enconman.2016.10.037
  13. Chozhavendhan, S., Pradhap, Singh M.V., Fransila, B., Kumar, R.P., Karthiga Devi, G. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry. 1(2). 1-6. DOI: 10.1016/j.crgsc.2020.04.002
  14. Yatish, K.V., Lalithamba, H.S., Suresh, R., Latha, H.K.E. (2020). Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticles for biodiesel production and its kinetic study. Renewable Energy. 147. 310-321. DOI: 10.1016/j.renene.2019.08.139
  15. Kawashima, A., Matsubara, K., Honda, K, (2008). Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology. 99. 3439–3443. DOI: 10.1016/j.biortech.2007.08.009
  16. Lanfredi, S., Matos, J da Silva S.R., Djurado, E., Sadouki, A.S., Chouaih, A., Poon, P.S., González, E.R.P Nobre M.A.L. (2020). K- and Cu-doped CaTiO3-based nanostructured hollow spheres as alternative catalysts to produce fatty acid ethyl esters as potential biodiesel. Applied Catalysis B: Environment and Energy. 2721. 18986. DOI: 1016/j.apcatb.2020.118986
  17. Istadi, I., Mabruro, U., Kalimantini, B.A., Buchori, L., Anggoro, D.D. (2016). Reusability and stability tests of calcium oxide based catalyst (K2O/CaO-ZnO) for transesterification of soybean oil to biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis. 11. 34-39. DOI: 10.9767/bcrec.11.1.413.34-39
  18. Hadiyanto, H., Lestari, S.P., Widayat, W. (2016). Preparation and characterization of Anadara Granosa shells and CaCO3 as heterogeneous catalyst for biodiesel production. Bulletin of Chemical Reaction Engineering & Catalysis. 11. 21-26. DOI: 10.9767/bcrec.11.1.402.21-26
  19. Dong, W., Song, B., Zhao, G., Han, G. (2015). A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties. Applied Surface Science. 349. 272-278. DOI: 10.1016/j.apsusc.2015.05.006
  20. Dong, W., Zhao, G., Bao, Q., Gu, X. (2015). Solvothermal preparation of CaTiO3 prism and CaTi2O4(OH)2 nanosheet by a facile surfactant-free method. Material Science. 21. 583-585. DOI: 10.5755/j01.ms.21.4.9697
  21. Kumchompoo, J., Puntharod, R., (2022). Synthesis and characterization of lithium silicate and potassium silicate from rice husk ash by hydrothermal-microwave method and application for biodiesel catalyst. Suranaree Journal of Science and Technology. 29(3) 010137. 1-7. https://ird.sut.ac.th/journal/sjst/#/los/manuscript/25264
  22. Velmurugan, A., Warrier, A.R. (2022). Production of biodiesel from waste cooking oil using mesoporous MgO-SnO2 nanocomposite. Journal of Engineering and Applied Science. 69. 1-22. DOI: 10.1186/s44147-022-00143-y
  23. Rahman, M.A., Aziz, M.A., Al-khulaidi, R.A., Sakib, N., Islam, M. (2017). Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable. Journal of Radiation Research and Applied Sciences. 10. 140-147. DOI: 10.1016/j.jrras.2017.02.004
  24. Salam, K.A., Velasques-Orta, S.B., Harvey, A.P. (2017). Effect of soaking pre-treatment on reactive extraction/in situ transesterification of nannochloropsis occulata for biodiesel production. Journal of Sustainable Bioenergy Systems. 7. 149-164. DOI: 10.4236/jsbs.2017.74011
  25. Chozhavendhan, S., Pradhap, Singh M.V., Fransila, B., Kumar, R.P., Karthiga, Devi G. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry. 1(2). 1-6. DOI: 10.1016/j.crgsc.2020.04.002
  26. Han, C., Liu, J., Yang, W., Wu, Q., Yang, H., Xue, X. (2016). Enhancement of photocatalytic activity of CaTiO3 through HNO3 acidification. Journal of Photochemistry and Photobiology A: Chemistry. 322-323. 1-9. DOI: 10.1016/j.jphotochem.2016.02.012
  27. Li, S., Zhang, J., Jamil, S., Cai, Q., Zang, S., (2018). Conversion of eggshells into calcium titanate cuboid and its adsorption properties. Res. Research on Chemical Intermediates. 44. 3933-3946. DOI: 10.1007/s11164-018-3332-1
  28. Hindryawati, N., Maniam, G.-P., Karim, MD.-R., Chong, K-F., (2014). Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Eng. Sci. Technol. Int. J. 17, 95-103. DOI: 10.1016/j.jestch.2014.04.002
  29. Muhamuni, N.N., Adewuyi, Y.G. (2009). Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel−biodiesel blends, and blend adulteration with soy oil. Energy Fuels. 23. 3773-3782. DOI: 10.1021/ef900130m
  30. Salinas, D., Araya, P., Guerrero, S. (2012). Study of potassium-supported TiO2 catalysts for the production of biodiesel. Applied Catalysis B: Environment and Energy. 117-118. 260-267. DOI: 10.1016/j.apcatb.2012.01.016
  31. Marciniuk, L.L., Hammer, P., Pastore, H.O., Schuchardt, U., Cardoso, D., (2014). Sodium titanate as basic catalyst in transesterification reactions. Fuel. 118. 48-54. DOI: 10.1016/j.fuel.2013.10.036
  32. Yahya, N.Y., Ngadi, N., Jusoh, M., Halim, N.A.A. (2016). Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Conversion and Management. 129. 275-283. DOI: 10.1016/j.enconman.2016.10.037
  33. Nady, D., Zaki, A.H., Raslan, M., Hozayen, W. (2020). Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. International Journal of Biological Macromolecules. 146. 1169-1179. DOI: 10.1016/j.ijbiomac.2019.09.240

Last update:

No citation recorded.

Last update:

No citation recorded.