skip to main content

Optimal Suppression of Photocatalytic Activity of Hybrid TiO2 Particles in Epoxy Thin Film by Using Taguchi Method

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Penang, Malaysia

Received: 10 Jun 2024; Revised: 2 Aug 2024; Accepted: 4 Aug 2024; Available online: 7 Aug 2024; Published: 30 Oct 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by MKICS and BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, two different Al2O3-TiO2 and SiO2-TiO2 hybrid TiO2 particles were synthesised by using silica (SiO2) and alumina (Al2O3) to suppress the photocatalysis of TiO2. Key variables such as the concentration of the hybridization material (C), heating temperature (Th), and calcinating temperature (Tc) were selected with performance measured by photodegradation rate. The Taguchi L9 orthogonal array, a systematic approach used in the design of experiments (DOE), confirmed A333 (Al2O3-TiO2) achieved 99% photodegradation suppression with photodegradation rate reduced significantly from 0.01305 min−1 to 0.00009 min−1 and improved yellowing resistance by 63%, while S323 (SiO2-TiO2) achieved 75% suppression with photocatalysis activity decreased from 0.01305 min−1 to 0.0033 min−1 and 42% improved resistance. X-ray Diffraction (XRD) analysis showed A333 had a higher rutile phase (40.1% vs. 10.2% for S323), and Fourier Transform Infra Red (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) analyses revealed A333's rougher surface and lower surface area compared to S323 and pure TiO2. Overall, A333 effectively suppressed photocatalysis and improved yellowing resistance of epoxy thin film. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: TiO2; hybrid particles; Al2O3-TiO2; SiO2-TiO2; suppression of photocatalytic activity; Taguchi method; epoxy; yellowing
Funding: Ministry Of Higher Education Malaysia under contract FRGS/1/2022/STG05/USM/03/3

Article Metrics:

  1. Eskandarloo, H., Badiei, A., Behnajady, M.A. (2014). TiO2/CeO2 Hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables. Industrial & Engineering Chemistry Research, 53(19), 7847 – 7855. DOI: 10.1021/ie403460d
  2. Benčina, M., Iglič, A., Mozetič, M., Junkar, I. (2020). Crystallized TiO2 nano surfaces in biomedical applications, Nanomaterials, 10(6), 1121. DOI: 10.3390/nano10061121
  3. Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D.T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., Sobotta, L. (2020). TiO2 nanoparticles: Prospects and applications in medicine. Nanomaterials, 10(2), 387. DOI: 10.3390/nano10020387
  4. Huang, P., Shi, H.Q., Xiao, H.M., Li, Y.Q., Hu, N., Fu, S.Y. (2017). High performance surface modified TiO2/silicone nanocomposite. Scientific Reports, 7, 5951. DOI: 10.1038/s41598-017-05166-7
  5. Mont, F.W., Kim, J.K., Schubert, M.F., Schubert, F.E., Siegel, R.W. (2008). High refractive index TiO2 nanoparticle loaded encapsulants for light-emitting diodes. Journal of Applied Physics, 103(8), 083120-083126. DOI: 10.1063/1.2903484
  6. Trivedi, M., Murase, J. (2017). Titanium Dioxide in Sunscreen: Application of TiO2. London: InTech Open Limited. DOI: 10.5772/intechopen.68886
  7. Veronovski, N., Verhovšek, D., Godnjavec, J. (2013). The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based acrylic coatings on wood protection. Wood Science Technology, 47(2), 317–328. DOI: 10.1007/s00226-012-0498-3
  8. Yazdan Mehr, J., Lai, X., Li, H., Zeng, X., Zhang, Z. (2018). Synthesis of zirconium-containing polyhedral oligometallasilsesquioxane as an efficient thermal stabilizer for silicone rubber. Polymers, 10(5), 520. DOI: 10.3390/polym10050520
  9. Antunes, A., Popelka, A., Aljarod, O., Hassan, M.K., Luyt, A.S. (2020). Effects of rutile TiO2 nanoparticles on accelerated weathering degradation of poly (Lactic Acid). Polymers, 12(5), 1096. DOI: 10.3390/polym12051096
  10. Dwyer, D.B., Isbill, S.B., Niedziela, J.L., Kapsimalis, R.J., Duckworth, D.C. (2020). Influence of temperature on accessible pyrolysis pathways of homopolymerized bisphenol A/F epoxies and copolymers. Journal of Analytical and Applied Pyrolysis, 153(9), 104978. DOI: 10.1016/j.jaap.2020.104978
  11. Wei, B.X., Zhao, L., Wang, T.J., Gao, H., Wu, H.X., Jin, Y. (2013). Photo-stability of TiO2 particles coated with several transition metal oxides and its measurement by RhB degradation. Advanced Powder Technology, 24(3), 708–713. DOI: 10.1016/j.apt.2012.12.009
  12. Azambre, B., Zenboury, L., Weber, J.V., Burg, P. (2010). Surface characterization of acidic ceria-zirconia prepared by direct sulfation. Applied Surface Science, 256(14), 4570-4581. DOI: 10.1016/j.apsusc.2010.02.049
  13. Bouslama, M., Amamra, M.C., Jia, Z., Ben Amar, M., Chhor, K., Brinza, O., Abderrabba, M., Vignes, J.L., Kanaev, A. (2012). Nanoparticulate TiO2-Al2O3 photocatalytic media: Effect of particle size and polymorphism on photocatalytic activity. ACS Catalysis, 2(9), 1884-1892. DOI: 10.1021/cs300033y
  14. Karunakaran, C., Magesan, P., Gomathisankar, P., Vinayagamoorthy, P. (2013). Photocatalytic degradation of dyes by Al2O3-TiO2 and ZrO2-TiO2 nanocomposites. Material Science Forum. 734, 325–333. DOI: 10.4028/www.scientific.net/MSF.734.325
  15. Kong, E.D.H., Chau, J.H.F., Lai, C.W., Khe, C.S., Sharma, G., Kumar, A., Siengchin, S., Sanjay, M.R. (2022). GO/TiO2-related nanocomposites as photocatalysts for pollutant removal in wastewater treatment. Nanomaterials, 12(19), 3536. DOI: 10.3390/nano12193536
  16. Mansour, H., Omri, K., Bargougui, R., Ammar, S. (2020). Novel α-Fe2O3/TiO2 nanocomposites with enhanced photocatalytic activity. Applied Physics A, 126, 151. DOI: 10.1007/s00339-020-3320-3
  17. Tyukavkina, V.V., Shchelokova, E.A., Tsyryatyeva, A.V., Kasikov, A.G. (2021). TiO2–SiO2 nanocomposites from technological wastes for self-cleaning cement composition. Journal of Building Engineering, 44(46), 102648. DOI: 10.1016/j.jobe.2021.102648
  18. Xu, L., Shen, Y., Ding, Y., Wang, L. (2018). Superhydrophobic and Ultraviolet-Blocking Cotton Fabrics Based on TiO2/SiO2 Composite Nanoparticles. Journal of Nanoscience and Nanotechnology, 18(10), 6879–6886. DOI: 10.1166/jnn.2018.15463
  19. Filatova, E.O., Konashuk, A.S. (2015). Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries. The Journal of Physical Chemistry C, 119(35), 20755–20761. DOI: 10.1021/acs.jpcc.5b06843
  20. Güler, E., Uğur, G., Güler, M. (2020). A theoretical study for the band gap energies of the most common SiO2 polymorphs. Chinese Journal of Physics, 65(1), 472–480. DOI: 10.1016/j.cjph.2020.03.014
  21. A. Morlando, A., Sencadas, V., Cardillo, D., Konstantinov, K. (2018). Suppression of the photocatalytic activity of TiO2 nanoparticles encapsulated by chitosan through a spray-drying method with potential for use in sun blocking applications. Powder Technology, 329, 252–259. DOI: 10.1016/j.powtec.2018.01.057
  22. Akshay, V.R., Arun, B., Mandal, G., Mutta, G.R., Chanda, A., Vasundhara, M. (2018). Observation of optical bandgap narrowing and enhanced magnetic moment in co-doped sol-gel-derived anatase TiO2 nanocrystals. The Journal of Physical Chemistry C, 122, 26592–26604. DOI: 10.1021/acs.jpcc.8b06646
  23. Kaleji, B.K., Gorgani, M. (2022). Comparison of sol-gel and hydrothermal synthesis methods on the structural, optical, and photocatalytic properties of Nb/Ag co-doped TiO2 mesoporous nanoparticles. International Journal of Environmental Analytical Chemistry, 102(14), 3357–3372. DOI: 10.1080/03067319.2020.1767096
  24. Mekasuwandumrong, O., Pavarajarn, V., Inoue, M., Praserthdam, P. (2006). Preparation and phase transformation behavior of χ-alumina via solvothermal synthesis, Materials Chemistry and Physics, 100(2-3), 445–450. DOI: 10.1016/j.matchemphys.2006.01.040
  25. Siwińska-Stefańska, K., Jesionowski, T. (2017). Advanced hybrid materials based on TiO2 for Environmental and Electrochemical Applications. In Janus, M., Titanium Dioxide. London: InTechOpen Limited. DOI: 10.5772/intechopen.69357
  26. Liang, Y., Sun, S., Deng, T., Ding, H., Chen, W., Chen, Y. (2018). The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials, 11(3), 450. DOI: 10.3390/ma11030450
  27. Lee, H. S., Koo, S. M., Yoo, J. W. (2012). Ceramic processing research TiO2-SiO2 nanoparticles for suppressing photocatalytic activities and improving hydrophilicity. Journal of Ceramic Processing Research, 13, 300-303
  28. Lee, M.H., Patil, U.M., Kochuveedu, S.T., Lee, C.S., Kim, D.H. (2012). The Effect of SiO2 shell on the suppression of photocatalytic activity of TiO2 and ZnO nanoparticles. Bulletin of the Korean Chemical Society, 33(11), 3767–3771. DOI: 10.5012/bkcs.2012.33.11.3767
  29. Karazi, S.M., Moradi, M., Benyounis, K.Y. (2019). Statistical and Numerical Approaches for Modeling and Optimizing Laser Micromachining Process-Review. In Reference Module in Materials Science and Materials Engineering. DOI: 10.1016/B978-0-12-803581-8.11650-9
  30. Sivaiah, P., Chakradhar, D. (2019). Modelling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurements, 134, 142–152. DOI: 10.1016/j.measurement.2018.10.067
  31. Salim, E.T., Naayi, S.A., Hassan, A.I. (2018). FTIR and XRD analysis of Al2O3 nanostructured thin film prepared at low temperature using spray pyrolysis method. International Journal of Nanoelectronics and Materials, 11, 1-6
  32. Zhang, H., Wang, X., Li, N., Xia, J., Meng, Q., Ding, J., Lu, J. (2018). Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Advances, 8(60), 34241–34251. DOI: 10.1039/C8RA06681G
  33. Al-Oubidy, E.A., Kadhim, F.J. (2019). Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique. Optical and Quantum Electronics, 51(1), 23. DOI: 10.1007/s11082-018-1738-z
  34. Salim, E.T., Naayi, S.A., Hassan, A.I. (2018). FTIR and XRD analysis of Al2O3 nanostructured thin film prepared at low temperature using spray pyrolysis method. International Journal of Nanoelectronics and Materials, 11, 1-6
  35. Praveen, P.V., Iruthagiri, G., Mugundan, S., Shanmugan, N. (2013). Structural, optical, and morphological analyses of pristine TiO2 nanoparticles synthesized via sol-gel route. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 117, 622–629. DOI: 10.1016/j.saa.2013.09.037
  36. Madani, M., Omri, K., Fattah, N., Ghorbal, A., Portier, X. (2017). Influence of SiO2 ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. Journal of Materials Science: Materials in Electronics, 28(12), 12977–12983. DOI: 10.1007/s10854-017-7129-6
  37. Gosens, I., Post, J.A., Fonteyne, L.J., Jansen, E.H.J.M., Geus, J.W., Cassee F.R., Jong, W.H. (2010). Impact of agglomeration state of nano and submicron sized gold particles on pulmonary inflammation. Particle and Fibre Toxicology, 7(1), 31. DOI: 10.1186/1743-8977-7-37
  38. Guo, J., Bui, H., Valdesueiro, D., Yuan, S., Liang, B., Ommen, J. (2018). Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions. Nanomaterials, 8 (2), 61. DOI: 10.3390/nano8020061
  39. Bianchi, C., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., Capucci, V. (2014). Photocatalytic degradation of acetone, acetaldehyde, and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental, 146, 123–130. DOI: 10.1016/j.apcatb.2013.02.047
  40. Cheng, H., Wang, W., Huang, B., Wang, Z., Zhan, J., Qin, X., Zhang, X., Dai, Y. (2013). Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. Journal of Materials Chemistry A, 1(24), 7131–7136. DOI: 10.1039/C3TA10849J
  41. Hosseini, S., Jahangirian, H., Webster, T.J., Masoudi, S.S., Arou, M.K. (2016). Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption. International Journal of Nanomedicine, 11, 3969–3978. DOI: 10.2147/IJN.S96558
  42. Eh, C.L.M., Yeo, W.S., Sung, A.N., Abdelrhman, A.N. (2022). Yellowness index measurement model in MATLAB mobile. AIP Conference Proceedings, 2676, 020006. DOI: 10.1063/5.0109303

Last update:

No citation recorded.

Last update:

No citation recorded.