School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Penang, Malaysia
BibTex Citation Data :
@article{BCREC20164, author = {Sunderishwary S. Muniandy and Tan Sek Soon and Swee Yong Pung and Sivakumar Ramakrishnan}, title = {Optimal Suppression of Photocatalytic Activity of Hybrid TiO2 Particles in Epoxy Thin Film by Using Taguchi Method}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {3}, year = {2024}, keywords = {TiO2; hybrid particles; Al2O3-TiO2; SiO2-TiO2; suppression of photocatalytic activity; Taguchi method; epoxy; yellowing}, abstract = { In this study, two different Al 2 O 3 -TiO 2 and SiO 2 -TiO 2 hybrid TiO 2 particles were synthesised by using silica (SiO 2 ) and alumina (Al 2 O 3 ) to suppress the photocatalysis of TiO 2 . Key variables such as the concentration of the hybridization material ( C ), heating temperature ( T h ), and calcinating temperature ( T c ) were selected with performance measured by photodegradation rate. The Taguchi L 9 orthogonal array, a systematic approach used in the design of experiments (DOE), confirmed A333 (Al 2 O 3 -TiO 2 ) achieved 99% photodegradation suppression with photodegradation rate reduced significantly from 0.01305 min −1 to 0.00009 min −1 and improved yellowing resistance by 63%, while S323 (SiO 2 -TiO 2 ) achieved 75% suppression with photocatalysis activity decreased from 0.01305 min −1 to 0.0033 min −1 and 42% improved resistance. X-ray Diffraction (XRD) analysis showed A333 had a higher rutile phase (40.1% vs. 10.2% for S323), and Fourier Transform Infra Red (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) analyses revealed A333's rougher surface and lower surface area compared to S323 and pure TiO 2 . Overall, A333 effectively suppressed photocatalysis and improved yellowing resistance of epoxy thin film. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {393--407} doi = {10.9767/bcrec.20164}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20164} }
Refworks Citation Data :
In this study, two different Al2O3-TiO2 and SiO2-TiO2 hybrid TiO2 particles were synthesised by using silica (SiO2) and alumina (Al2O3) to suppress the photocatalysis of TiO2. Key variables such as the concentration of the hybridization material (C), heating temperature (Th), and calcinating temperature (Tc) were selected with performance measured by photodegradation rate. The Taguchi L9 orthogonal array, a systematic approach used in the design of experiments (DOE), confirmed A333 (Al2O3-TiO2) achieved 99% photodegradation suppression with photodegradation rate reduced significantly from 0.01305 min−1 to 0.00009 min−1 and improved yellowing resistance by 63%, while S323 (SiO2-TiO2) achieved 75% suppression with photocatalysis activity decreased from 0.01305 min−1 to 0.0033 min−1 and 42% improved resistance. X-ray Diffraction (XRD) analysis showed A333 had a higher rutile phase (40.1% vs. 10.2% for S323), and Fourier Transform Infra Red (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) analyses revealed A333's rougher surface and lower surface area compared to S323 and pure TiO2. Overall, A333 effectively suppressed photocatalysis and improved yellowing resistance of epoxy thin film. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)