skip to main content

Performance of Hydrothermally Prepared NiMo Dispersed on Sulfated Zirconia Nano-Catalyst in The Conversion of Used Palm Cooking Oil into Jet Fuel Range Bio-Hydrocarbons

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2Research Center for Chemistry, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten 15314, Indonesia

3Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten 15314, Indonesia

Received: 9 May 2024; Revised: 8 Jul 2024; Accepted: 8 Jul 2024; Available online: 15 Jul 2024; Published: 30 Aug 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Human efforts to overcome environmental problems from using fossil fuels continue, such as hydroconversion of biomass into bio-jet fuel. Research on producing a jet fuel range of bio-hydrocarbons from used palm cooking oil catalyzed by sulfated zirconia impregnated with nickel-molybdenum bimetal has been successfully conducted. The hydrothermal method synthesized the nano-catalyst material in the sulfation and impregnation processes. The hydroconversion process was carried out at atmospheric pressure and a temperature of 300–600 °C for 2 h with a hydrogen gas flow rate of 20 mL/min and a catalyst-to-feed ratio of 1:100 (wt%). Compared with zirconia and sulfated zirconia, NiMo-impregnated sulfated zirconia showed the best activity and selectivity in bio-jet fuel production with liquid product and selectivity of 61.07% and 43.49%, respectively. This catalyst also performed well in three consecutive runs, with bio-jet fuel selectivity in the second and third runs of 51.68% and 30.86%, respectively. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Bio-jet fuel; NiMo/sulfated zirconia; used palm cooking oil; hydroconversion
Funding: Universitas Gadjah Mada; National Research and Innovation Agency (BRIN) Indonesia

Article Metrics:

  1. Fan, Y.V., Perry, S., Klemeš, J.J., Lee, C.T. (2018). A review on air emissions assessment: Transportation. Journal of Cleaner Production. 194, 673–684. DOI: 10.1016/j.jclepro.2018.05.151
  2. El-Araby, R., Abdelkader, E., El Diwani, G., Hawash, S.I. (2020). Bio-aviation fuel via catalytic hydrocracking of waste cooking oils. Bulletin of the National Research Centre. 44, 1–9. DOI: 10.1186/s42269-020-00425-6
  3. Doliente S.S, Narayan A, Tapia JFD, Samsatli N.J., Zhao Y, Samsatli S (2020). Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Frontiers in Energy Research. 8, 1–38. DOI: 10.3389/fenrg.2020.00110
  4. Agharadatu, R.H., Wijaya, K., Prastyo, Wangsa, Hauli, L., Oh, W.-C. (2023). Application of Mesoporous NiMo/Silica (NiMo/SiO2) as a Catalyst in the Hydrocracking of Used Cooking Oil into Jet Fuel. Silicon. 1–13. DOI 10.1007/s12633-023-02683-1
  5. Foo, W.H., Chia, W.Y., Tang, D.Y.Y., Koay, S.S.N., Lim, S.S. Chew, K.W. (2021) The conundrum of waste cooking oil: transforming hazard into energy, Journal of Hazardous Materials. 417, 126129. DOI: 10.1016/j.jhazmat.2021.126129
  6. Zhang, Z., Wang, Q., Chen, H., Zhang, X. (2017). Hydroconversion of Waste Cooking Oil into Green Biofuel over Hierarchical USY-Supported NiMo Catalyst: A Comparative Study of Desilication and Dealumination. Catalysts. 7, 281. DOI: 10.3390/CATAL7100281
  7. Lin, C.H., Chen, Y.K., Wang, W.C. (2020). The production of bio-jet fuel from palm oil derived alkanes. Fuel. 260, 116345. DOI: 10.1016/j.fuel.2019.116345
  8. Dobrosz-Gómez, I., Gómez-García, M.Á., Bojarska, J., Kozanecki, M., Rynkowski, J.M. (2015). Combustion synthesis and properties of nanocrystalline zirconium oxide. Comptes Rendus Chimie. 18, 1094–1105. DOI: 10.1016/j.crci.2015.02.007
  9. Suseno, A., Wijaya, K., Trisunaryanti, W., Shidiq, M. (2015). Synthesis and Characterization of ZrO2-Pillared Bentonites. Asian Journal of Chemistry, 27, 2619–2623. DOI: 10.14233/ajchem.2015.18599
  10. Amin, A.K., Wijaya, K., Trisunaryanti, W. (2020). Physico-Chemical Properties of Nickel Promoted Sulfated Zirconia Powder Prepared using Different Procedures. Asian Journal of Chemistry, 32, 555–560. DOI: 10.14233/ajchem.2020.21991
  11. Wijaya, K., Utami, M., Damayanti, A.K., Tahir, I., Tikoalu, A.D., Rajagopal, R., Thirupathi, A., Ali, D., Alarifi, S., Chang, S.W., Ravindran, B. (2022). Nickel-modified sulfated zirconia catalyst: synthesis and application for transforming waste cooking oil into biogasoline via a hydrocracking process. Fuel. 322, 124152. DOI: 10.1016/j.fuel.2022.124152
  12. Meng, S., Li, W., Li, Z., Song, H., (2023). Recent progress of the transition metal-based catalysts in the catalytic biomass gasification: A mini-review. Fuel. 353, 129169. DOI: 10.1016/j.fuel.2023.129169
  13. Chen, W., Wu, Z., Peng, R., Wu, W., Li, X., Cao, D., Zhang, Z., Niu, K. (2023). Low-cost diatomite supported binary transition metal sulfates: an efficient reusable solid catalyst for biodiesel synthesis. RSC Advances. 13, 6002–6009. DOI: 10.1039/D2RA07947J
  14. Al-Marshed, A., Hart, A., Leeke, G., Greaves, M. Wood, J. (2015). Effectiveness of different transition metal dispersed catalysts for in situ heavy oil upgrading. Industrial & Engineering Chemistry Research. 54, 10645–10655. DOI: 10.1021/acs.iecr.5b02953
  15. Chintakanan, P., Vitidsant, T., Reubroycharoen, P., Kuchonthara, P., Kida, T., Hinchiranan, N. (2021). Bio-jet fuel range in biofuels derived from hydroconversion of palm olein over Ni/zeolite catalysts and freezing point of biofuels/Jet A-1 blends. Fuel. 293, 120472. DOI: 10.1016/j.fuel.2021.120472
  16. Kaewtrakulchai, N., Smuthkochorn, A., Manatura, K., Panomsuwan, G., Fuji, M., Eiad-Ua, A. (2022). Porous Biochar Supported Transition Metal Phosphide Catalysts for Hydrocracking of Palm Oil to Bio-Jet Fuel. Materials. 15, 6584. DOI: 10.3390/ma15196584
  17. Imai, H., Kimura, T., Terasaka, K., Li, X., Sakashita, K., Asaoka, S., Al-Khattaf, S.S. (2018). Hydroconversion of fatty acid derivative over supported Ni-Mo catalysts under low hydrogen pressure. Catalysis Today. 303, 185–190. DOI: 10.1016/j.cattod.2017.08.023
  18. Wang, J., Mo, F., Fei, J., Ling, W., Cui, M., Lei, H., Jiang, L., Huang, Y., (2022). Insights into the synergistic effect between nickel and molybdenum for catalyzing urea electrooxidation. Carbon Neutralization. 1, 267–276. DOI: 10.1002/cnl2.27
  19. Lin, C.H., Chen, Y.K., Wang, W.C. (2020). The production of bio-jet fuel from palm oil derived alkanes. Fuel. 260, 116345. DOI: 10.1016/j.fuel.2019.116345
  20. Cai, Z., Ding, Y., Zhang, J., Yu, P., Ma, Y., Cao, Y., Zheng, Y., Huang, K., Jiang, L. (2023). In situ generation of dispersed MoS2 catalysts from oil-soluble Mo-based ionic liquids for highly effective biolipids hydrodeoxygenation. Journal of Catalysis. 423, 50–61. DOI: 10.1016/j.jcat.2023.04.022
  21. Hanifa, A., Nadia, A., Saputri, W.D., Syoufian, A., Wijaya, K. (2021). Performance of Ni-Mo Sulfated Nanozirconia Catalyst for Conversion of Waste Cooking Oil into Biofuel via Hydrocracking Process. Materials Science Forum. 1045, 79–89. DOI: 10.4028/www.scientific.net/MSF.1045.79
  22. Huerta-Mata, C.A., Chowdari, R.K., Soto-Arteaga, C.E., Infantes-Molina, A., Alonso-Núnez, G., Fuentes-Moyado, S., Huirache-Acuña, R., Díaz de León, J.N. (2022). Hydrothermal synthesis of bulk Ni impregnated WO3 2D layered structures as catalysts for the desulfurization of 3-methyl thiophene. Chemical Engineering Journal Advances. 11, 100312. DOI: 10.1016/j.ceja.2022.100312
  23. Feng, S., Li, G. (2017). Hydrothermal and solvothermal syntheses. Modern Inorganic Synthesis Chemistry (Second Edition). 73–104. DOI: 10.1016/B978-0-444-63591-4.00004-5
  24. Saviola, A.J., Wijaya, K., Syoufian, A., Saputri, W.D., Saputra, D.A., Aziz, I.T.A., Oh, W.-C. (2024). Hydroconversion of used palm cooking oil into bio-jet fuel over phosphoric acid-modified nano-zirconia catalyst. Case Studies in Chemical and Environmental Engineering. 9, 100653. DOI: 10.1016/j.cscee.2024.100653
  25. Yu, P., Chen, C., Li, G., Wang, Z., Li, X. (2020). Active, Selective, and Recyclable Zr(SO4)2/SiO2 and Zr(SO4)2/Activated Carbon Solid Acid Catalysts for Esterification of Malic Acid to Dimethyl Malate. Catalysts, 10, 384. DOI: 10.3390/catal10040384
  26. Utami, M., Wijaya, K. Trisunaryanti, W. (2017). Effect of sulfuric acid treatment and calcination on commercial zirconia nanopowder, Key Engineering Materials 757 131–137. DOI: 10.4028/www.scientific.net/KEM.757.131
  27. Utami, M., Trisunaryanti, W. Shida, K., Tsuhida, M., Kawakita, H., Ohto, Wijaya, K., Tominaga, M. (2019). Hydrothermal preparation of a platinum-loaded sulphated nanozirconia catalyst for the effective conversion of waste low density polyethylene into gasoline range hydrocarbons. RSC Advances. 9, 41392–41401. DOI: 10.1039/C9RA08834B
  28. Sekawael, S.J., Pratika, R.A., Hauli, L., Amin, A.K., Utami, M., Wijaya, K. (2022). Recent Progress on Sulfated Nanozirconia as a Solid Acid Catalyst in the Hydrocracking Reaction. Catalysts. 12, 191. DOI: 10.3390/catal12020191
  29. La Ore, M.S., Wijaya, K., Trisunaryanti, W., Saputri, W.D., Heraldy, E., Yuwana, N.W., Hariani, P.L., Budiman, A., Sudiono, S. (2020). The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of lowgrade coconut oil into biodiesel. Journal of Environmental Chemical Engineering. 8, 104205. DOI: 10.1016/j.jece.2020.104205
  30. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 87, 1051–1069. DOI: 10.1515/pac-2014-1117
  31. Utami, M., Wijaya, K., Trisunaryanti, W. (2018). Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels. Materials Chemistry and Physics. 213, 548–555. DOI: 10.1016/j.matchemphys.2018.03.055
  32. Hauli, L., Wijaya, K., Syoufian, A. (2019) Hydrocracking of LDPE plastic waste into liquid fuel over sulfated zirconia from a commercial zirconia nanopowder, Oriental Journal of Chemistry. 35, 128–133, DOI: 10.13005/ojc/350113
  33. Xu, Y., Du, X.H., Li, J., Wang, P., Zhu, J. Ge, F.J., Zhou, J., Song, M., Zhu, W.Y. (2019) A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane. Journal of Fuel Chemistry and Technology. 47, 199–208. DOI: 10.1016/S1872-5813(19)30010-6
  34. Ibrahim, M.S., Trisunaryanti, W., Triyono T. (2022) Nickel supported parangtritis beach sand (PP) catalyst for hydrocracking of palm and Malapari oil into biofuel. Bulletin of Chemical Reaction Engineering and Catalysis. 17, 638–649. DOI: 10.9767/bcrec.17.3.15668.638-649
  35. Trisunaryanti, W., Wijaya, K., Triyono, Kartini, I., Rodiansono, Purwono, S., Mara, A., Budiansyah, A. (2023). Preparation of Mo-impregnated mordenite catalysts for the conversion of refined kernel palm oil into bioavtur, Communications in Science and Technology. 8, 226–234, DOI: 10.21924/cst.8.2.2023.1288
  36. Hasan, S.H., Attia, N.K., El Diwani, G.I., Amin, S.K.M Ettouney, R.S. El-Rifai M.A. (2023). Catalytic hydrocracking of jatropha oil over natural clay for bio-jet fuel production. Scientific Reports. 13, 13419. DOI: 10.21203/rs.3.rs-2956399/v1
  37. Makcharoen, M., Kaewchada, A., Akkarawatkhoosith, N. (2021). Biojet fuel production via deoxygenation of crude palm kernel oil using Pt/C as catalyst in a continuous fixed bed reactor. Energy Convers. Manag. X. 12, 100125. DOI: 10.1016/j.ecmx.2021.100125

Last update:

No citation recorded.

Last update:

No citation recorded.