skip to main content

Sonochemical Assisted Synthesis of Cr-PTC Metal Organic Framework, ZnO, and Fe3O4 Composite and Their Photocatalytic Activity in Methylene Blue Degradation

1Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

2Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

4 Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

5 Department of Public Health, Faculty of Health Science, UIN Syarif Hidayatullah Jakarta, Jl. Kertamukti No. 5, Ciputat, South Tangerang, Banten 15412, Indonesia

View all affiliations
Received: 9 May 2024; Revised: 23 Jun 2024; Accepted: 23 Jun 2024; Available online: 27 Jun 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Methylene blue pollutants can be treated by photocatalytic methods using metal oxide-based semiconductor materials and metal organic framework (MOF). These two materials are often coupled into a composite to improve their physicochemical properties and catalytic activity. This research focuses on the synthesis of composites based on Cr-PTC MOF, ZnO, and Fe3O4 by the sonochemical method. The obtained composites were characterized and tested for catalytic activity in methylene blue pollutant degradation in an aqueous system under acidic conditions (pH = 5). Our investigation shows that the Cr-PTC@Fe3O4 composite possesses the lowest band gap energy of 1.86 eV and achieves the highest photocatalytic activity in methylene blue degradation at solution pH = 5, with a percent degradation of 84.36%. The sonochemical incorporation of Fe3O4 and Cr-PTC MOF is able to fabricate materials in a short time with better photocatalytic activity in degrading methylene blue than the single materials. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Cr-PTC MOF; ZnO; Fe3O4; composite; methylene blue; sonochemical
Funding: UIN Syarif Hidayatullah Jakarta under contract B-304/LP2MPUSLITPEN/TL.03/2022

Article Metrics:

  1. Rais, I., Nurhaeni, Ruslan, Pusptasari, D. J. (2019). Biosorben kitosan cangkang keong sawah terhadap penyerapan zat warna methylene blue. Kovalen: Jurnal Riset Kimia, 5(2), pp. 214–221. doi: 10.22487/kovalen.2019.v5.i2.12826
  2. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., Khan, I. (2022). Review on methylene blue: its properties, uses, toxicity and photodegradation. Water (Basel), 14(2), p. 242. doi: 10.3390/w14020242
  3. Aliah, H., Karlina, Y. (2015). Semikonduktor TiO2 sebagai material fotokatalis berulang. Jurnal ISTEK, 9(1), pp. 185–203
  4. Nurhasni, N., Mar’af, R., Hendrawati, H. (2018). Pemanfaatan kulit kacang tanah (Arachis hipogaea L.) sebagai adsorben zat warna metilen biru. Jurnal Kimia Valensi, 4(2), pp. 156–167. doi: 10.15408/jkv.v4i2.8895
  5. Nurhasni, N., Harahap, S., Fathoni, A., Hendrawati, H. (2021). Synthesis of adsorbent from bagasse for methylene blue adsorption. Jurnal Kimia Valensi, 7(2), pp. 188–195. doi: 10.15408/jkv.v7i2.20916
  6. Rahmawati, L., Azis, M. M., Rochmadi, R. (2021). Methylene blue removal from waste water using sodium lignosulfonate and polyaluminium chloride: Optimization with RSM. AIP Conference Proceedings, pp. 020-035. doi: 10.1063/5.0052016
  7. Mahecha, F. C., Parra, D. C., Sandoval, J. A., Mayoraga, M. A., Ortiz, S. A. (2021). Removal of cationic dyes utilizing natural coffee pulp coagulantns. Chem Eng Trans, 87. pp. 487–492. doi: 10.3303/CET2187082
  8. Farouq, R. (2022). Coupling adsorption-photocatalytic degradation of methylene blue and maxilon red. J Fluoresc, 32(4), pp. 1381–1388. doi: 10.1007/s10895-022-02934-1
  9. Aisien, F. A., Amenaghawon, N. A., Otuorimuo, U. O. (2014). Decolourisation of methylene blue in aqueous solution using locally sourced photocatalysts via UV irradiation photocatalytic degradation. J Chem, 2(4). pp. 320–329
  10. Barjasteh-Moghaddam, M., Habibi-Yangjeh, A. (2011). Effect of operational parameters on photodegradation of methylene blue on ZnS nanoparticles prepared in presence of an ionic liquid as a highly efficient photocatalyst. Journal of the Iranian Chemical Society, 8(S1). pp. S169–S175. doi: 10.1007/BF03254294
  11. Saridewi, N., Firdaus, D. A., Aziz, I., Kumila, B. N., Dasumiati, D. (2021). Biosynthesis of ZnO nanoparticles using pumpkin peel extract (Cucurbita moschata) and its applications as semiconductor in dye sensitized solar cell (DSSC). Jurnal Kimia Valensi. 7(2), pp. 100–107. doi: 10.15408/jkv.v7i2.21046
  12. Ishak, N. A. I. Md., Kamarudin, S. K. Timmiati, S. N. (2019). Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater. Res. Express, 6(11). https://doi.org/10.1088/2053-1591/ab4458
  13. Bachvarova-Nedelcheva, A., Iordanova, R., Stoyanova, A., Gegova, R., Dimitriev, Y., Loukanov, A. (2013). Photocatalytic properties of ZnO/TiO2 powders obtained via combustion gel method. Open Chem. 11(3). pp. 364–370. doi: 10.2478/s11532-012-0167-2
  14. Roy, S., Darabdhara, J. Ahmaruzzaman, M. (2013). ZnO-based Cu metal–organic framework (MOF) nanocomposite for boosting and tuning the photocatalytic degradation performance. Environ Sci Pollut Res, 30, 95673–95691. https://doi.org/10.1007/s11356-023-29105-4
  15. Li, K. de Mimérand, Y. R., Jin, X., Yi, J., Guo, J. (2020). Metal Oxide (ZnO and TiO2) and Fe-based Metal–Organic-Framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Applied Nano Materials, 3(3), 2830-2845. doi: 10.1021/acsanm.0c00096
  16. Teng, D., Zhang, J., Luo, X., Jing, F., Wang, H., Chen, J., Yang, C., Zang, S., Zhou, Y. (2021). Remarkably enhanced photodegradation of organic pollutants by NH2-UiO-66/ZnO composite under visible-light irradiation. Journal of Renewable Material. doi: 10.32604/jrm.2022.019209
  17. Buasakun, J., Srilaoong, P., Rattanakam, R., Duangthongyou, T. (2021). Synthesis of heterostructure of ZnO@MOF-46(Zn) to improve the photocatalytic performance in methylene blue degradation. Crystals (Basel), 11(11), p. 1379. doi: 10.3390/cryst11111379
  18. Saridewi, N., Azhar, F. M., Abdillah, P. A., Zulys, A., Nurbayti, S., tulhusna, L., Adawiah, A. (2022). Synthesize metal-organic frameworks from chromium metal ions and ptcda ligands for methylene blue photodegradation. RASAYAN Journal of Chemistry, 15(04), pp. 2544–2550. doi: 10.31788/RJC.2022.1547046
  19. Saffari, J., Mir, N., Ghanbari, D., Khandan-Barani, K., Hassanabadi, A., Hosseini-Tabatabaei, M. R. (2015). Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes. Journal of Materials Science: Materials in Electronics, 26(12), pp. 9591–9599. doi: 10.1007/s10854-015-3622-y
  20. Aghayi‐Anaraki, M., Safarifard, V. (2020). Fe3O4@MOF magnetic nanocomposites: synthesis and applications. Eur J Inorg Chem, 2020(20), pp. 1916–1937. doi: 10.1002/ejic.202000012
  21. Butova, V. V., Soldatov, M. A., Guda, A. A., Lomachenko, K. A., Lamberti, C. (2016). Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 85(3), pp. 280–307. doi: 10.1070/RCR4554
  22. Saridewi, N., Komala, S., Zulys, A., Nurbayti, S., Tulhusna, L., Adawiah, A. (2022). Synthesis of ZnO-Fe3O4 Magnetic Nanocomposites through Sonochemical Methods for Methylene Blue Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 17 (3), 650-660 doi: 10.9767/bcrec.17.3.15492.650-660
  23. Mahrunnisa, N., Adawiah, A., Aziz, I., Zulys, A. (2023). Green Synthesis of Cr-PTC-HIna Metal Organic Frameworks (MOFs) and Its Application in Methylene Blue Photocatalytic Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 18 (3), 362-374. doi: 10.9767/bcrec.18885
  24. Alias, S. S., Ismail, A. B., Mohamad, A. A. (2010). Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloys Compd, 499(2), pp. 231–237. doi: 10.1016/j.jallcom.2010.03.174
  25. Ribut, S. H., Abdullah, C. A. C., Mustafa, M., Yusoff, M. Z. M., Azman, S. N. A. (2018). Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity. Mater Res Express, 6(2), p. 025016. doi: 10.1088/2053-1591/aaecbc
  26. Tournebize, J., Boudier, A., Joubert, O., Eidi, H., Bartosz, G., Maincent, P., Leroy, P., Sapin-Minet, A. (2012). Impact of gold nanoparticle coating on redox homeostasis. Int J Pharm, 438(1–2), pp. 107–116. doi: 10.1016/j.ijpharm.2012.07.026
  27. Agnestisia, R. (2017). Synthesis & characterization of magnetit (Fe3O4) and its applications as adsorbent methylene blue. Jurnal Sains dan Terapan Kimia, 11(2), p. 61. doi: 10.20527/jstk.v11i2.4039
  28. Wen, Y., Zhang, P., Sharma, V. K., Ma, X., Zhou, H. C. (2021). Metal-organic frameworks for environmental applications. Cell Rep Phys Sci, 2(2), p. 100348. doi: 10.1016/j.xcrp.2021.100348
  29. Mahreni, M., Ristianingsih, Y. (2020). A review on metal-organic framework (MOF): synthesis and solid catalyst applications. LPPM UPN “Veteran” Yogyakarta Conference Series Proceeding on Engineering and Science Series (ESS), pp. 638–645
  30. Noro, S. (2013). Metal–Organic Frameworks in Comprehensive Inorganic Chemistry II, Second Edition. Amsterdam: Elsevier
  31. Israr, F., Chun, D., Kim, Y., Kim, D. K. (2016). High yield synthesis of Ni-BTC metal–organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent. Ultrason Sonochem, 31, pp. 93–101. doi: 10.1016/j.ultsonch.2015.12.007
  32. Zhang, B., Zhang, J., Liu, C., Sang, X., Peng, L., Ma, X., Wu, T., Hana, B., Yang, G. (2015). Solvent determines the formation and properties of metal–organic frameworks. RSC Adv, 5(47), pp. 37691–37696. doi: 10.1039/C5RA02440D
  33. Shadmehr, J., Zeinali, S., Tohidi, M. (2019). Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media. J Dispers Sci Technol, 40(10), pp. 1423–1440. doi: 10.1080/01932691.2018.1516149
  34. Rana, N., Chand, S., Gathania, A. K. (2016). Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. Int Nano Lett, 6(2), pp. 91–98. doi: 10.1007/s40089-015-0171-6
  35. Abadiah, N. M., Yuliantika, D., Hariyanto, Y. A., Saputro, R. E., Masruroh, Taufiq, A., Soontaranoon, S. (2019). Nanostructure, band gap, and antibacterial activity of spinel Fe2MO4/OO magnetic fluids. IOP Conf Ser Earth Environ Sci, 276(1), p. 012064. doi: 10.1088/1755-1315/276/1/012064
  36. Hassan, M. M., Khan, W., Azam, A., Naqvi, A. H. (2015). Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 21, pp. 283–291. doi: 10.1016/j.jiec.2014.01.047
  37. Isai, K. A., Shrivastava, V. S. (2019). Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl Sci, 1(10), p. 1247. doi: 10.1007/s42452-019-1279-5
  38. Zhang, J., Lin, S., Han, M., Su, Q., Xia, L., Hui, Z. (2020). Adsorption Properties of magnetic magnetite nanoparticle for coexistent Cr(VI) and Cu(II) in mixed solution. Water (Basel), 12(2), p. 446. doi: 10.3390/w12020446
  39. Kalska-Szostkoa, B., Wykowskaa, U., Piekut, K., Satuła, D. (2014). Stability of Fe3O4 nanoparticles in various model solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450(2014), p. 15-24. https://doi.org/10.1016/j.colsurfa.2014.03.002
  40. Kumar, P., Pandey, P. C. (2015). Consequence of cobalt incorporation on structural and optical properties of transparent nano-crystalline ZnO thin film. Journal of International Academy of Physical Sciences, 20(3), pp. 203–214
  41. Cheng, X., Yu, X., Xing, Z. (2012). Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity. Appl Surf Sci, 258(7), pp. 3244–3248. doi: 10.1016/j.apsusc.2011.11.072

Last update:

No citation recorded.

Last update:

No citation recorded.