skip to main content

Conversion of Isopropanol to Diisopropyl Ether over Cobalt Phosphate Modified Natural Zeolite Catalyst

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Inderalaya 30662, South Sumatra, Indonesia

2Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya, Inderalaya 30662, South Sumatra, Indonesia

3Research Center for Chemistry, Indonesian Institute of Sciences, Building 452 Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten, Indonesia

4 Department of Chemical Engineering, Faculty of Engineering, Unviersitas Sriwijaya, Indralaya 30662, Indonesia

View all affiliations
Received: 13 Apr 2024; Revised: 3 Jun 2024; Accepted: 4 Jun 2024; Available online: 17 Jun 2024; Published: 30 Aug 2024.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study aims to produce diisopropyl ether (DIPE) via isopropanol dehydration using cobalt-phosphate-supported natural zeolite catalysts. The catalytic activities of the zeolite/CoO and zeolite/Co(H2PO4)2 were compared. The as-prepared catalysts were assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and N2 adsorption-desorption. Surface acidity was determined using the gravimetric method with pyridine as the probe. The results of this study showed that natural zeolite was favorably impregnated by CoO and Co(H2PO4)2 species. The impregnation process affected the textural and acidic features of the catalysts. The zeolite/Co(H2PO4)2 catalyst with a loading of 8 mEq.g-1 exhibited the highest surface acidity of 1.827 mmol.g-1. This catalyst also promoted the highest catalytic activity towards isopropanol dehydration, with an isopropanol conversion of 66.19%, DIPE selectivity, and yield of 46.72% and 34.99%, respectively. The cobalt phosphate species promoted higher catalytic activity for isopropanol dehydration than the CoO species. This study demonstrated the potential of cobalt phosphate-supported natural zeolite catalysts for DIPE production with adequate performance. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: isopropanol dehydration; diisopropyl ether; natural zeolite; cobalt phosphate; impregnation
Funding: Universitas Sriwijaya

Article Metrics:

  1. Fan, X., Sun, W., Liu, Z., Gao, Y., Yang, J., Yang, B., Law, C.K. (2021). Exploring the oxidation chemistry of diisopropyl ether: Jet-stirred reactor experiments and kinetic modeling. Proceedings of the Combustion Institute, 38(1), 321–328. DOI: 10.1016/j.proci.2020.06.242
  2. Zhang, L., Lim, E.Y., Loh, K.C., Ok, Y.S., Lee, J.T.E., Shen, Y., Wang, C.H., Dai, Y., Tong, Y.W. (2020). Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Conversion and Management, 209(February), 112654. DOI: 10.1016/j.enconman.2020.112654
  3. Qi, J., Zhu, R., Han, X., Zhao, H., Li, Q., Lei, Z. (2020). Ionic liquid extractive distillation for the recovery of diisopropyl ether and isopropanol from industrial effluent: Experiment and simulation. Journal of Cleaner Production, 254, 120132. DOI: 10.1016/j.jclepro.2020.120132
  4. Murat, M., Tišler, Z., Šimek, J., Hidalgo-Herrador, J.M. (2020). Highly active catalysts for the dehydration of isopropanol. Catalysts, 10(6) DOI: 10.3390/CATAL10060719
  5. Armenta, M.A., Valdez, R., Silva-Rodrigo, R., Olivas, A. (2019). Diisopropyl ether production via 2-propanol dehydration using supported iron oxides catalysts. Fuel, 236(April 2018), 934–941. DOI: 10.1016/j.fuel.2018.06.138
  6. Phung, T.K., Busca, G. (2015). Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths. Chemical Engineering Journal, 272, 92–101. DOI: 10.1016/j.cej.2015.03.008
  7. Zhang, M., Yu, Y. (2013). Dehydration of ethanol to ethylene. Industrial & Engineering Chemistry Research, 52 (28), 9505–9514. DOI: 10.1021/ie401157c
  8. Krutpijit, C., Jongsomjit, B. (2017). Effect of HCl loading and ethanol concentration over HCl-activated clay catalysts for ethanol dehydration to ethylene. J. Oleo Sci. DOI: 10.5650/jos.ess17118
  9. Hasanudin, H., Asri, W.R., Meilani, A., Yuliasari, N. (2022). Kinetics Study of Free Fatty Acid Esterification from Sludge Palm Oil Using Zeolite Sulfonated Biochar from Molasses Composite Catalyst. In: Materials Science Forum. pp. 113–118. DOI: 10.4028/p-5ovu3d
  10. Harun, F.W., Almadani, E.A., Radzi, S.M. (2016). Metal cation exchanged montmorillonite K10 (MMT K10): Surface properties and catalytic activity. Journal of Scientific Research and Development, 3(3), 90–96
  11. Gupta, S., Gambhire, A.B., Jain, R. (2022). Conversion of carbohydrates (glucose and fructose) into 5-HMF over solid acid loaded natural zeolite (PMA/NZ) catalyst. Materials Letters: X, 13, 100119. DOI: 10.1016/j.mlblux.2021.100119
  12. Olegario, E.M., Mark Pelicano, C., Cosiñero, H.S., Sayson, L.V., Chanlek, N., Nakajima, H., Santos, G.N. (2021). Facile synthesis and electrochemical characterization of novel metal oxide/Philippine natural zeolite (MOPNZ) nanocomposites. Materials Letters, 294, 129799. DOI: 10.1016/j.matlet.2021.129799
  13. Yao, D., Yang, H., Chen, H., Williams, P.T. (2018). Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Applied Catalysis B: Environmental, 227(December 2017), 477–487. DOI: 10.1016/j.apcatb.2018.01.050
  14. Ferreira, A.D.F., Maia, A.J., Guatiguaba, B., Herbst, M.H., Rocha, P.T.L., Pereira, M.M., Louis, B. (2014). Nickel-doped small pore zeolite bifunctional catalysts: A way to achieve high activity and yields into olefins. Catalysis Today, 226, 67–72. DOI: 10.1016/j.cattod.2013.10.033
  15. Kadarwati, S., Rahmawati, F., Eka Rahayu, P., Wahyuni, S., Imam Supardi, K. (2013). Kinetics and mechanism of Ni/zeolite-catalyzed hydrocracking of palm oil into bio-fuel. Indonesian Journal of Chemistry, 13(1), 77–85. DOI: 10.22146/ijc.21330
  16. Borsella, E., Aguado, R., De Stefanis, A., Olazar, M. Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 130, 249–255. DOI: 10.1016/j.jaap.2017.12.015
  17. Sriningsih, W., Saerodji, M.G., Trisunaryanti, W., Triyono, Armunanto, R., Falah, I.I. (2014). Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environmental Sciences, 20, 215–224. DOI: 10.1016/j.proenv.2014.03.028
  18. Grzybek, G., Góra-Marek, K., Tarach, K., Pyra, K., Patulski, P., Greluk, M., Słowik, G., Rotko, M., Kotarba, A. (2022). Tuning the properties of the cobalt-zeolite nanocomposite catalyst by potassium: Switching between dehydration and dehydrogenation of ethanol. Journal of Catalysis, 407, 364–380. DOI: 10.1016/j.jcat.2022.02.006
  19. Zhu, J., Wen, K., Zhang, P., Wang, Y., Ma, L., Xi, Y., Zhu, R., Liu, H., He, H. (2017). Keggin-Al30 pillared montmorillonite. Microporous and Mesoporous Materials, 242, 256–263. DOI: 10.1016/j.micromeso.2017.01.039
  20. Ni, W., Li, D., Zhao, X., Ma, W., Kong, K., Gu, Q., Chen, M., Hou, Z. (2019). Catalytic dehydration of sorbitol and fructose by acid-modified zirconium phosphate. Catalysis Today, 319 (2010), 66–75. DOI: 10.1016/j.cattod.2018.03.034
  21. Katkar, P.K., Marje, S.J., Kale, S.B., Lokhande, A.C., Lokhande, C.D., Patil, U.M. (2019). Synthesis of hydrous cobalt phosphate electro-catalysts by a facile hydrothermal method for enhanced oxygen evolution reaction: Effect of urea variation. CrystEngComm, 21(5), 884–893. DOI: 10.1039/c8ce01653d
  22. Shaddad, M.N., Arunachalam, P., Al-Mayouf, A.M., Ghanem, M.A., Alharthi, A.I. (2019). Enhanced photoelectrochemical oxidation of alkali water over cobalt phosphate (Co-Pi) catalyst-modified ZnLaTaON2 photoanodes. Ionics, 25(2), 737–745. DOI: 10.1007/s11581-018-2688-y
  23. Lee, H., Kim, K.H., Choi, W.H., Moon, B.C., Kong, H.J., Kang, J.K. (2019). Cobalt-Phosphate Catalysts with Reduced Bivalent Co-Ion States and Doped Nitrogen Atoms Playing as Active Sites for Facile Adsorption, Fast Charge Transfer, and Robust Stability in Photoelectrochemical Water Oxidation. ACS Applied Materials and Interfaces, 11(47), 44366–44374. DOI: 10.1021/acsami.9b16523
  24. Kim, H., Park, J., Park, I., Jin, K., Jerng, S.E., Kim, S.H., Nam, K.T., Kang, K. (2015). Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nature Communications, 6, 1–11. DOI: 10.1038/ncomms9253
  25. Xuan, L.L., Liu, X.J., Wang, X. (2019). Cobalt phosphate nanoparticles embedded nitrogen and phosphorus-codoped graphene aerogels as effective electrocatalysts for oxygen reduction. Frontiers in Materials, 6(February), 1–12. DOI: 10.3389/fmats.2019.00022
  26. Keane, T.P., Brodsky, C.N., Nocera, D.G. (2019). Oxidative Degradation of Multi-Carbon Substrates by an Oxidic Cobalt Phosphate Catalyst. Organometallics, 38(6), 1200–1203. DOI: 10.1021/acs.organomet.8b00337
  27. Di Palma, V., Zafeiropoulos, G., Goldsweer, T., Kessels, W.M.M., van de Sanden, M.C.M., Creatore, M., Tsampas, M.N. (2019). Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochemistry Communications, 98(2019), 73–77. DOI: 10.1016/j.elecom.2018.11.021
  28. Sugiarti, S., Septian, D.D., Maigita, H., Khoerunnisa, N.A., Hasanah, S., Wukirsari, T., Hanif, N., Apriliyanto, Y.B. (2020). Investigation of H-zeolite and metal-impregnated zeolites as transformation catalysts of glucose to hydroxymethylfurfural. AIP Conference Proceedings, 2243 (June). DOI: 10.1063/5.0001789
  29. Valdés, H., Riquelme, A.L., Solar, V.A., Azzolina-Jury, F., Thibault-Starzyk, F. (2021). Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite: The role of chemical surface characteristics in the adsorption mechanism. Separation and Purification Technology, 258(July 2020), 118080. DOI: 10.1016/j.seppur.2020.118080
  30. Sharma, A., Lee, B.K. (2016). Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media. Journal of Environmental Management, 165, 1–10. DOI: 10.1016/j.jenvman.2015.09.013
  31. Ma, H., Zhang, J., Wang, M., Sun, S. (2019). Modification of Y-Zeolite with Zirconium for Enhancing the Active Component Loading: Preparation and Sulfate Adsorption Performance of ZrO(OH)2/Y-Zeolite. ChemistrySelect, 4 (27), 7981–7990. DOI: 10.1002/slct.201901519
  32. Fu, H., Zhong, L., Yu, Z., Liu, W., Abdel-Fatah, M.A., Li, J., Mingzhang, Yu, J., Dong, W., Lee, S.S. (2022). Enhanced adsorptive removal of ammonium on the Na+/Al3+ enriched natural zeolite. Separation and Purification Technology, 298 (April), 121507. DOI: 10.1016/j.seppur.2022.121507
  33. Mehdi, B., Belkacemi, H., Brahmi-Ingrachen, D., Braham, L.A., Muhr, L. (2022). Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modeling. Groundwater for Sustainable Development, 17(March), 100757. DOI: 10.1016/j.gsd.2022.100757
  34. Bendou, S., Amrani, M. (2014). Effect of Hydrochloric Acid on the Structural of Sodic-Bentonite Clay. Journal of Minerals and Materials Characterization and Engineering, 02 (05), 404–413. DOI: 10.4236/jmmce.2014.25045
  35. Susi, E.P., Wijaya, K., Wangsa, Pratika, R.A., Hariani, P.L. (2020). Effect of nickel concentration in natural zeolite as catalyst in hydrocracking process of used cooking oil. Asian Journal of Chemistry, 32(11), 2773–2777. DOI: 10.14233/ajchem.2020.22708
  36. Zendelska, A., Golomeova, M., Jakupi, Š., Lisičkov, K., Kuvendžiev, S., Marinkovski, M. (2018). Characterization and application of clinoptilolite for removal of heavy metal ions from water resources. Geologica Macedonica, 32(1), 21–32
  37. Byrappa, K., Kumar, B.V.S. (2007). Characterization of zeolites by infrared spectroscopy. Asian Journal of Chemistry, 19(6), 4933–4935
  38. Nallusamy, S., Sujatha, K. (2020). Experimental analysis of nanoparticles with cobalt oxide synthesized by coprecipitation method on electrochemical biosensor using FTIR and TEM. Materials Today: Proceedings, 37(Part 2), 728–732. DOI: 10.1016/j.matpr.2020.05.735
  39. Lee, S.K., Lee, U.H., Hwang, Y.K., Chang, J.S., Han Jang, N. (2019). Catalytic and sorption applications of porous nickel phosphate materials. Catalysis Today, 324(March 2018), 154–166. DOI: 10.1016/j.cattod.2018.06.012
  40. Vifttaria, M., Nurhayati, N., Anita, S. (2019). Surface Acidity of Sulfuric Acid Activated Maredan Clay Catalysts with Boehm Titration Method and Pyridine Adsorption-FTIR. Journal of Physics: Conference Series, 1351(1) DOI: 10.1088/1742-6596/1351/1/012040
  41. Rinaldi, N., Kristiani, A. (2017). Physicochemical of pillared clays prepared by several metal oxides. AIP Conference Proceedings, 1823(March). DOI: 10.1063/1.4978136
  42. Zholobenko, V., Freitas, C., Jendrlin, M., Bazin, P., Travert, A., Thibault-Starzyk, F. (2020). Probing the acid sites of zeolites with pyridine: Quantitative AGIR measurements of the molar absorption coefficients. Journal of Catalysis, 385, 52–60. DOI: 10.1016/j.jcat.2020.03.003
  43. Putri, Q.U., Hasanudin, H., Asri, W.R. (2023). Production of levulinic acid from glucose using nickel phosphate ‑ silica catalyst. Reaction Kinetics, Mechanisms and Catalysis, 136(1), 287–309. DOI: 10.1007/s11144-022-02334-3
  44. Hasanudin, H., Asri, W.R., Said, M., Hidayati, P.T., Purwaningrum, W., Novia, N., Wijaya, K. (2022). Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst. RSC Advances, 12(26), 16431–16443. DOI: 10.1039/D2RA02438A
  45. Wijaya, K., Nadia, A., Dinana, A., Pratiwi, A.F., Tikoalu, A.D., Wibowo, A.C. (2021). Catalytic hydrocracking of fresh and waste frying oil over Ni-and Mo-based catalysts supported on sulfated silica for biogasoline production. Catalysts, 11 (10), 1150. DOI: 10.3390/catal11101150
  46. Saab, R., Polychronopoulou, K., Anjum, D.H., Charisiou, N.D., Goula, M.A., Hinder, S.J., Baker, M.A., Schiffer, A. (2022). Effect of SiO2/Al2O3 ratio in Ni/Zeolite-Y and Ni-W/Zeolite-Y catalysts on hydrocracking of heptane. Molecular Catalysis, 528(April), 112484. DOI: 10.1016/j.mcat.2022.112484
  47. Li, L., Wei, X.Y., Liu, G.H., Li, Z., Li, J.H., Liu, F.J., Kong, Q.Q., Fan, Z.C., Zong, Z.M., Bai, H.C. (2022). Selective catalytic hydroconversion of organic waster oil to cyclanes over a coal fly ash-derived zeolite-supported nickel catalyst: Waster to energy. Fuel, 316,123185. DOI: 10.1016/j.fuel.2022.123185
  48. Pierella, L.B., Renzini, S., Anunziata, O.A. (2005). Catalytic degradation of high density polyethylene over microporous and mesoporous materials. Microporous and Mesoporous Materials, 81(1–3), 155–159. DOI: 10.1016/j.micromeso.2004.11.015
  49. Cho, J.H., Park, J.H., Chang, T.S., Seo, G., Shin, C.H. (2012). Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts. Applied Catalysis A: General, 417–418, 313–319. DOI: 10.1016/j.apcata.2012.01.011
  50. Argyle, M.D., Bartholomew, C.H. (2015). Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5(1), 145–269. DOI: 10.3390/catal5010145
  51. Turek, W., Haber, J., Krowiak, A. (2005). Dehydration of isopropyl alcohol used as an indicator of the type and strength of catalyst acid centres. Applied Surface Science, 252(3), 823–827. DOI: 10.1016/j.apsusc.2005.02.059
  52. Min, H.K., Kim, Y.W., Kim, C., Ibrahim, I.A.M., Han, J.W., Suh, Y.W., Jung, K.D., Park, M.B., Shin, C.H. (2022). Phase transformation of ZrO2 by Si incorporation and catalytic activity for isopropyl alcohol dehydration and dehydrogenation. Chemical Engineering Journal, 428(August 2021), 131766. DOI: 10.1016/j.cej.2021.131766
  53. Hasanudin, H., Asri, W.R., Andini, L., Riyanti, F., Mara, A., Hadiah, F., Fanani, Z. (2022). Enhanced Isopropyl Alcohol Conversion over Acidic Nickel Phosphate-Supported Zeolite Catalysts. ACS Omega, 7(43), 38923–38932. DOI: 10.1021/acsomega.2c04647

Last update:

No citation recorded.

Last update:

No citation recorded.