Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
BibTex Citation Data :
@article{BCREC20138, author = {Maria Ulfa and Indriyani Pangestuti and Cindy Nur Anggreani}, title = {Physicochemical Characteristics of Titania Particles Synthesized with Gelatin as a Template Before and After Regeneration and Their Performance in Photocatalytic Methylene Blue}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {2}, year = {2024}, keywords = {Titania; photocatalyst; methylene blue; Physicochemical Characteristics; gelatin template}, abstract = { TiO2 material has an important position in the processing of methylene blue waste because it is economical, has abundant polymorphs, high sustainability and supports green chemistry applications. Mesoporous TiO2 is a porous material that has higher effectiveness than other TiO2 because the pore structure has a large diameter at the nano scale (2-50 nm) with a regular shape so that the surface area and pore volume are greater than the average for other TiO2. The synthesis of mesopore TiO2 material has so far used the sol-gel route with synthetic pore directing agents such as P123 which can be replaced with gelatin as a cheaper and safer pore directing agent with high sustainability and abundance. Based on the description above, this research aims to photodegrade methylene blue using mesoporous TiO2 (m-TiO2) nanoparticles which were prepared by the sol–gel method using gelatin and P123 as template. X-ray diffraction (XRD), scanning electron microscopy (SEM), Electron dispersive X-Ray (EDX), and UV–vis spectroscopy techniques were used to characterize the samples. Photocatalytic activities of samples for methylene blue degradation were investigated. The catalyst before and after regeneration will be studied so that the effect of regeneration on the results of methylene blue photocatalysis with m-TiO2 can be determined. XRD results confirmed the formation of the anatase and rutile phase for the TiO2 nanoparticles, with crystallite sizes larger after regeneration in the range of 9–21 nm. The large particle size was after regeneration due to the promotion by high temperature treatment. TiO2 nanoparticles showed the best photocatalytic activity on the first use to 91% and remained stable after four cycles with photodegradation efficiency up to 76% based on the measured UV-Vis spectroscopy. TiO2 as synthesis could be the best candidate for catalyst with the high performance after multicycle regeneration. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). }, issn = {1978-2993}, pages = {242--251} doi = {10.9767/bcrec.20138}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20138} }
Refworks Citation Data :
TiO2 material has an important position in the processing of methylene blue waste because it is economical, has abundant polymorphs, high sustainability and supports green chemistry applications. Mesoporous TiO2 is a porous material that has higher effectiveness than other TiO2 because the pore structure has a large diameter at the nano scale (2-50 nm) with a regular shape so that the surface area and pore volume are greater than the average for other TiO2. The synthesis of mesopore TiO2 material has so far used the sol-gel route with synthetic pore directing agents such as P123 which can be replaced with gelatin as a cheaper and safer pore directing agent with high sustainability and abundance. Based on the description above, this research aims to photodegrade methylene blue using mesoporous TiO2 (m-TiO2) nanoparticles which were prepared by the sol–gel method using gelatin and P123 as template. X-ray diffraction (XRD), scanning electron microscopy (SEM), Electron dispersive X-Ray (EDX), and UV–vis spectroscopy techniques were used to characterize the samples. Photocatalytic activities of samples for methylene blue degradation were investigated. The catalyst before and after regeneration will be studied so that the effect of regeneration on the results of methylene blue photocatalysis with m-TiO2 can be determined. XRD results confirmed the formation of the anatase and rutile phase for the TiO2 nanoparticles, with crystallite sizes larger after regeneration in the range of 9–21 nm. The large particle size was after regeneration due to the promotion by high temperature treatment. TiO2 nanoparticles showed the best photocatalytic activity on the first use to 91% and remained stable after four cycles with photodegradation efficiency up to 76% based on the measured UV-Vis spectroscopy. TiO2 as synthesis could be the best candidate for catalyst with the high performance after multicycle regeneration. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)