Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur Yogyakarta 55281, Indonesia
BibTex Citation Data :
@article{BCREC20136, author = {Fajar Inggit Pambudi and Sutarno Sutarno and Adhi Dwi Hatmanto and Mita Patmawati and Tika Dwi Utari}, title = {Investigating the Structure of Defects in Heterometallic Zeolitic Imidazolate Frameworks ZIF-8(Zn/Cd) and Its Interaction with CO2 Using First-Principle Calculations}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {2}, year = {2024}, keywords = {zeolitic imidazolate frameworks; defects; DFT; carbon dioxide; doping; ZIF-8(Zn/Cd); ZIF}, abstract = { Inducing defect in metal-organic frameworks (MOFs) is one of the strategies to modify the structure and properties of this functional material. Defect may occur in a pristine MOF due to missing organic linkers, metal centres and/or other structural behaviours. In this study, the structure of defects in multicomponent MOFs especially heterometallic MOFs of zeolitic imidazolate framework (ZIF-8(Zn/Cd)) was examined to unveil the possible preference defect formation due to missing 2-methylimidazolate (MeIm) and metal centres of Cd 2+ and Zn 2+ . Assuming defect formation due to the reaction between ZIF-8(Zn/Cd) and water, MeIm linker removal is energetically lower than removing metal centres of either Cd 2+ or Zn 2+ . But, the MeIm linker is easier to be removed when it is connected to Cd 2+ (Cd-MeIm-Cd) than when it is connected to Zn 2+ (Zn-MeIm-Zn). Defect in ZIF-8(Zn/Cd) affects the band gap energy to give slightly lower value than it in pristine ZIF-8(Zn/Cd). Non-covalent interaction (NCI) and interaction region indicator (IRI) analyses were also performed to indicate possible intermolecular forces such as van der Waals and attractive forces present in non-defective and defective ZIF-8(Zn/Cd). The presence of defects in mixed-metal ZIF-8(Zn/Cd) was also tested for its potential use on CO 2 adsorption. The interaction energy of CO 2 inside defective ZIF-8(Zn/Cd) indicates an exothermic behaviour where CO 2 molecule has a preference to be adsorbed inside the framework. This is especially when the capping agents at the defective ZIF-8(Zn/Cd) sites are removed to give open metal sites. This study provides insight how defects in multicomponent MOFs might presence affecting the structural and properties changes. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {190--214} doi = {10.9767/bcrec.20136}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20136} }
Refworks Citation Data :
Inducing defect in metal-organic frameworks (MOFs) is one of the strategies to modify the structure and properties of this functional material. Defect may occur in a pristine MOF due to missing organic linkers, metal centres and/or other structural behaviours. In this study, the structure of defects in multicomponent MOFs especially heterometallic MOFs of zeolitic imidazolate framework (ZIF-8(Zn/Cd)) was examined to unveil the possible preference defect formation due to missing 2-methylimidazolate (MeIm) and metal centres of Cd2+ and Zn2+. Assuming defect formation due to the reaction between ZIF-8(Zn/Cd) and water, MeIm linker removal is energetically lower than removing metal centres of either Cd2+ or Zn2+. But, the MeIm linker is easier to be removed when it is connected to Cd2+ (Cd-MeIm-Cd) than when it is connected to Zn2+ (Zn-MeIm-Zn). Defect in ZIF-8(Zn/Cd) affects the band gap energy to give slightly lower value than it in pristine ZIF-8(Zn/Cd). Non-covalent interaction (NCI) and interaction region indicator (IRI) analyses were also performed to indicate possible intermolecular forces such as van der Waals and attractive forces present in non-defective and defective ZIF-8(Zn/Cd). The presence of defects in mixed-metal ZIF-8(Zn/Cd) was also tested for its potential use on CO2 adsorption. The interaction energy of CO2 inside defective ZIF-8(Zn/Cd) indicates an exothermic behaviour where CO2 molecule has a preference to be adsorbed inside the framework. This is especially when the capping agents at the defective ZIF-8(Zn/Cd) sites are removed to give open metal sites. This study provides insight how defects in multicomponent MOFs might presence affecting the structural and properties changes. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)