skip to main content

Investigating the Structure of Defects in Heterometallic Zeolitic Imidazolate Frameworks ZIF-8(Zn/Cd) and Its Interaction with CO2 Using First-Principle Calculations

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur Yogyakarta 55281, Indonesia

Received: 2 Mar 2024; Revised: 28 Mar 2024; Accepted: 28 Mar 2024; Available online: 9 Apr 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Inducing defect in metal-organic frameworks (MOFs) is one of the strategies to modify the structure and properties of this functional material. Defect may occur in a pristine MOF due to missing organic linkers, metal centres and/or other structural behaviours. In this study, the structure of defects in multicomponent MOFs especially heterometallic MOFs of zeolitic imidazolate framework (ZIF-8(Zn/Cd)) was examined to unveil the possible preference defect formation due to missing 2-methylimidazolate (MeIm) and metal centres of Cd2+ and Zn2+. Assuming defect formation due to the reaction between ZIF-8(Zn/Cd) and water, MeIm linker removal is energetically lower than removing metal centres of either Cd2+ or Zn2+. But, the MeIm linker is easier to be removed when it is connected to Cd2+ (Cd-MeIm-Cd) than when it is connected to Zn2+ (Zn-MeIm-Zn). Defect in ZIF-8(Zn/Cd) affects the band gap energy to give slightly lower value than it in pristine ZIF-8(Zn/Cd). Non-covalent interaction (NCI) and interaction region indicator (IRI) analyses were also performed to indicate possible intermolecular forces such as van der Waals and attractive forces present in non-defective and defective ZIF-8(Zn/Cd). The presence of defects in mixed-metal ZIF-8(Zn/Cd) was also tested for its potential use on CO2 adsorption. The interaction energy of CO2 inside defective ZIF-8(Zn/Cd) indicates an exothermic behaviour where CO2 molecule has a preference to be adsorbed inside the framework. This is especially when the capping agents at the defective ZIF-8(Zn/Cd) sites are removed to give open metal sites. This study provides insight how defects in multicomponent MOFs might presence affecting the structural and properties changes. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Supporting Information (SI) PDF
Keywords: zeolitic imidazolate frameworks; defects; DFT; carbon dioxide; doping; ZIF-8(Zn/Cd); ZIF
Funding: Universitas Gadjah Mada under contract 7725/UN1.P.II/Dit-Lit/PT.01.03/2023

Article Metrics:

  1. Zhang, S., Zheng, M., Tang, Y., Zang, R., Zhang, X., Huang, X., … Pang, H. (2022). Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 32(40). https://doi.org/10.1002/adfm.202204714
  2. Sun, H., Zhang, Y., Guan, S., Huang, J., & Wu, C. (2020). Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. Journal of CO2 Utilization, 38, 262–272. https://doi.org/10.1016/j.jcou.2020.02.001
  3. Glenna, D. M., Jana, A., Xu, Q., Wang, Y., Meng, Y., Yang, Y., … Snyder, S. W. (2023). Carbon Capture: Theoretical Guidelines for Activated Carbon-Based CO 2 Adsorption Material Evaluation. The Journal of Physical Chemistry Letters, 14(47), 10693–10699. https://doi.org/10.1021/acs.jpclett.3c02711
  4. Chatterjee, S., Jeevanandham, S., Mukherjee, M., Vo, D.-V. N., & Mishra, V. (2021). Significance of re-engineered zeolites in climate mitigation – A review for carbon capture and separation. Journal of Environmental Chemical Engineering, 9(5), 105957. https://doi.org/10.1016/j.jece.2021.105957
  5. Aniruddha, R., Sreedhar, I., & Reddy, B. M. (2020). MOFs in carbon capture-past, present and future. Journal of CO2 Utilization, 42, 101297. https://doi.org/10.1016/j.jcou.2020.101297
  6. Jelmy, E. J., Thomas, N., Mathew, D. T., Louis, J., Padmanabhan, N. T., Kumaravel, V., … Pillai, S. C. (2021). Impact of structure, doping and defect-engineering in 2D materials on CO 2 capture and conversion. Reaction Chemistry & Engineering, 6(10), 1701–1738. https://doi.org/10.1039/D1RE00214G
  7. Li, Y., Liu, L., Yu, H., Zhao, Y., Dai, J., Zhong, Y., … Yu, H. (2022). Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Science of The Total Environment, 811, 151384. https://doi.org/10.1016/j.scitotenv.2021.151384
  8. Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie - International Edition, 54(25), 7234–7254. https://doi.org/10.1002/anie.201411540
  9. Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G., & Fischer, R. A. (2018). Defective Metal-Organic Frameworks. Advanced Materials, 30(37), 1704501. https://doi.org/10.1002/ADMA.201704501
  10. Pambudi, F. I., Anderson, M. W., & Attfield, M. P. (2019). Unveiling the mechanism of lattice-mismatched crystal growth of a core–shell metal–organic framework. Chemical Science, 10(41), 9571–9575. https://doi.org/10.1039/C9SC03131F
  11. Pambudi, F. I., Anderson, M. W., & Attfield, M. P. (2021). Crystal growth of the core and rotated epitaxial shell of a heterometallic metal–organic framework revealed with atomic force microscopy. Faraday Discussions, 231(0), 112–126. https://doi.org/10.1039/D1FD00033K
  12. Xiang, W., Zhang, Y., Chen, Y., Liu, C. J., & Tu, X. (2020). Synthesis, characterization and application of defective metal-organic frameworks: Current status and perspectives. Journal of Materials Chemistry A, 8(41), 21526–21546. https://doi.org/10.1039/d0ta08009h
  13. Wu, Y., Duan, H., & Xi, H. (2020). Machine Learning-Driven Insights into Defects of Zirconium Metal–Organic Frameworks for Enhanced Ethane–Ethylene Separation. Chemistry of Materials, 32(7), 2986–2997. https://doi.org/10.1021/acs.chemmater.9b05322
  14. Liu, L., Chen, Z., Wang, J., Zhang, D., Zhu, Y., Ling, S., … Han, Y. (2019). Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry 2019 11:7, 11(7), 622–628. https://doi.org/10.1038/s41557-019-0263-4
  15. Mandal, S., Natarajan, S., Mani, P., & Pankajakshan, A. (2021). Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials, 31(4), 2006291. https://doi.org/10.1002/ADFM.202006291
  16. Zhang, C., Han, C., Sholl, D. S., & Schmidt, J. R. (2016). Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. Journal of Physical Chemistry Letters, 7(3), 459–464. https://doi.org/10.1021/acs.jpclett.5b02683
  17. Fast, C. D., Woods, J., Lentchner, J., & Makal, T. A. (2019). Stabilizing defects in metal–organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials. Dalton Transactions, 48(39), 14696–14704. https://doi.org/10.1039/C9DT03004B
  18. Mileo, P. G. M., Cho, K. H., Chang, J. S., & Maurin, G. (2021). Water adsorption fingerprinting of structural defects/capping functions in Zr–fumarate MOFs: a hybrid computational-experimental approach. Dalton Transactions, 50(4), 1324–1333. https://doi.org/10.1039/D0DT03705B
  19. Bristow, J. K., Svane, K. L., Tiana, D., Skelton, J. M., Gale, J. D., & Walsh, A. (2016). Free energy of ligand removal in the metal-organic framework UiO-66. Journal of Physical Chemistry C, 120(17), 9276–9281. https://doi.org/10.1021/ACS.JPCC.6B01659/ASSET/IMAGES/LARGE/JP-2016-016595_0004.JPEG
  20. Tan, K., Pandey, H., Wang, H., Velasco, E., Wang, K. Y., Zhou, H. C., … Thonhauser, T. (2021). Defect Termination in the UiO-66 Family of Metal-Organic Frameworks: The Role of Water and Modulator. Journal of the American Chemical Society, 143(17), 6328–6332. https://doi.org/10.1021/JACS.1C01408/ASSET/IMAGES/LARGE/JA1C01408_0003.JPEG
  21. Chaemchuen, S., Luo, Z., Zhou, K., Mousavi, B., Phatanasri, S., Jaroniec, M., & Verpoort, F. (2017). Defect formation in metal–organic frameworks initiated by the crystal growth-rate and effect on catalytic performance. Journal of Catalysis, 354, 84–91. https://doi.org/10.1016/j.jcat.2017.08.012
  22. Jiang, D., Zhu, Y., Chen, M., Huang, B., Zeng, G., Huang, D., … Wei, W. (2019). Modified crystal structure and improved photocatalytic activity of MIL-53 via inorganic acid modulator. Applied Catalysis B: Environmental, 255, 117746. https://doi.org/10.1016/J.APCATB.2019.117746
  23. Cheng, P., & Hu, Y. H. (2016). Acetylene adsorption on defected MIL-53. International Journal of Energy Research, 40(6), 846–852. https://doi.org/10.1002/ER.3492
  24. Svane, K. L., Bristow, J. K., Gale, J. D., & Walsh, A. (2018). Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 6(18), 8507–8513. https://doi.org/10.1039/C7TA11155J
  25. Abednatanzi, S., Gohari Derakhshandeh, P., Depauw, H., Coudert, F. X., Vrielinck, H., Van Der Voort, P., & Leus, K. (2019, May 7). Mixed-metal metal-organic frameworks. Chemical Society Reviews, Vol. 48, pp. 2535–2565. Royal Society of Chemistry. https://doi.org/10.1039/c8cs00337h
  26. Denny, M. S., Kalaj, M., Bentz, K. C., & Cohen, S. M. (2018). Multicomponent metal-organic framework membranes for advanced functional composites. Chemical Science, 9(47), 8842–8849. https://doi.org/10.1039/c8sc02356e
  27. Sun, D., Sun, F., Deng, X., & Li, Z. (2015). Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Inorganic Chemistry, 54(17), 8639–8643. https://doi.org/10.1021/acs.inorgchem.5b01278
  28. Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., & Verpoort, F. (2017). Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. Journal of Materials Chemistry A, 5(3), 952–957. https://doi.org/10.1039/C6TA07860E
  29. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10186–10191. https://doi.org/10.1073/pnas.0602439103
  30. Tian, Y. Q., Yao, S. Y., Gu, D., Cui, K. H., Guo, D. W., Zhang, G., … Zhao, D. Y. (2010). Cadmium imidazolate frameworks with polymorphism, high thermal stability, and a large surface area. Chemistry - A European Journal, 16(4), 1137–1141. https://doi.org/10.1002/chem.200902729
  31. Sun, J., Semenchenko, L., Lim, W. T., Ballesteros Rivas, M. F., Varela-Guerrero, V., & Jeong, H. K. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264, 35–42. https://doi.org/10.1016/j.micromeso.2017.12.032
  32. Zaręba, J. K., Nyk, M., & Samoć, M. (2016). Co/ZIF-8 Heterometallic Nanoparticles: Control of Nanocrystal Size and Properties by a Mixed-Metal Approach. Crystal Growth & Design, 16(11), 6419–6425. https://doi.org/10.1021/acs.cgd.6b01090
  33. Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M., Lee, S., Zhang, H., … Snurr, R. Q. (2019). Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 64(12), 5985–5998. https://doi.org/10.1021/acs.jced.9b00835
  34. Kühne, T. D., Iannuzzi, M., Del Ben, M., Rybkin, V. V., Seewald, P., Stein, F., … Hutter, J. (2020). CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics, 152(19), 194103. https://doi.org/10.1063/5.0007045
  35. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  36. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132(15), 134101. https://doi.org/10.1063/1.3382344
  37. Lu, T., & Chen, Q. (2021). Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions**. Chemistry–Methods, 1(5), 231–239. https://doi.org/10.1002/cmtd.202100007
  38. Sapnik, A. F., Geddes, H. S., Reynolds, E. M., Yeung, H. H.-M., & Goodwin, A. L. (2018). Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues. Chemical Communications, 54(69), 9651–9654. https://doi.org/10.1039/C8CC04172E
  39. Zheng, B., Fu, F., Wang, L. L., Wang, J., Du, L., & Du, H. (2018). Effect of Defects on the Mechanical Deformation Mechanisms of Metal-Organic Framework-5: A Molecular Dynamics Investigation. Journal of Physical Chemistry C, 122(8), 4300–4306. https://doi.org/10.1021/ACS.JPCC.7B10928/SUPPL_FILE/JP7B10928_SI_007.AVI
  40. Yin, H., Kim, H., Choi, J., & Yip, A. C. K. (2015). Thermal stability of ZIF-8 under oxidative and inert environments: A practical perspective on using ZIF-8 as a catalyst support. Chemical Engineering Journal, 278, 293–300. https://doi.org/10.1016/j.cej.2014.08.075
  41. James, J. B., & Lin, Y. S. (2016). Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments. The Journal of Physical Chemistry C, 120(26), 14015–14026. https://doi.org/10.1021/acs.jpcc.6b01208
  42. Yang, X., Qiu, L., & Luo, X. (2018). ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity. RSC Advances, 8(9), 4890–4894. https://doi.org/10.1039/C7RA13351K
  43. Paudel, H. P., Shi, W., Hopkinson, D., Steckel, J. A., & Duan, Y. (2021). Computational modelling of adsorption and diffusion properties of CO 2 and CH 4 in ZIF-8 for gas separation applications: a density functional theory approach. Reaction Chemistry & Engineering, 6(6), 990–1001. https://doi.org/10.1039/D0RE00416B
  44. Fischer, M., & Bell, R. G. (2014). Interaction of hydrogen and carbon dioxide with sod-type zeolitic imidazolate frameworks: A periodic DFT-D study. CrystEngComm, 16(10), 1934–1949. https://doi.org/10.1039/c3ce42209g

Last update:

No citation recorded.

Last update:

No citation recorded.