skip to main content

Development of a Novel Support Modification for Efficient Lipase Immobilization: Preparation, Characterization, and Application for Bio-flavor Production

1Department of Chemical Engineering, Politeknik Negeri Malang, Malang 65145, Indonesia

2Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

3Department of Agro-industrial Technology, Faculty of Agriculture, University of Muhammadiyah Jember, Jalan Karimata 49, 68124 Jember, Indonesia

Received: 18 Feb 2024; Revised: 9 Apr 2024; Accepted: 12 Apr 2024; Available online: 24 Apr 2024; Published: 30 Aug 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Publishing Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Graphical Abstract
Abstract

The low cost and excellent catalytic properties of lipase for industrial processes are highly desirable. A promising new approach involves the support modification of lipase and spacer arm, which enables the enhancement of lipase properties. This study investigates the immobilization of crude lipase from Mucor miehei onto a Polyurethane Foam (PUF) surface using various coating techniques. The PUF matrix was obtained through isocyanate and polyol reactions. Subsequently, the PUF was coated by adsorbing lipase and adding edible support material. The immobilized lipase was then utilized in the hydrolysis of coconut oil to produce fatty acids. Furthermore, the immobilized enzyme was employed in the esterification of fatty acids to produce bio-flavors. The results demonstrate that the attachment reaction using support material, namely lecithin, gelatin, MgCl2, and Polyethylene glycol 6000 (PEG), all of which are simple and edible, was able to enhance the stability and reusability of lipase. This immobilization technique increased triglyceride hydrolysis into FFA by 422%. The successful edible support modification of immobilized lipase from M. miehei on PUF, coupled with significantly enhanced enzyme stability and catalytic activity, offers a promising, environmentally friendly solution for diverse applications in the food industry. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Immobilization; Bioflavor; Mucor miehei lipase; Polyurethane foam; Support modification
Funding: The Ministry of Cultural Education, Research and Technology of Republic Indonesia under contract 257/E4.1/AK.04.PT/2021 and 7147/PL2.1/HK/2021

Article Metrics:

  1. Özacar, M., Mehde, A.A., Mehdi, W.A., Özacar, Z.Z., Severgün, O. (2019). The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids and Surfaces B: Biointerfaces, 173, 58–68. DOI: 10.1016/j.colsurfb.2018.09.042
  2. Verma, D.K., Thyab Gddoa Al-Sahlany, S., Kareem Niamah, A., Thakur, M., Shah, N., Singh, S., Baranwal, D., Patel, A.R., Lara Utama, G., Noe Aguilar, C. (2022). Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi Journal of Biological Sciences, 29(3), 1565–1576. DOI: 10.1016/j.sjbs.2021.11.010
  3. Kordi, M., Salami, R., Bolouri, P., Delangiz, N., Asgari Lajayer, B., van Hullebusch, E.D. (2022). White biotechnology and the production of bio-products. Systems Microbiology and Biomanufacturing, 2(3), 413–429. DOI: 10.1007/s43393-022-00078-8
  4. Tan, Z., Chen, G., Chen, S., Zhang, J., Liu, J., Ma, X., Liao, H., Hu, Z., Ge, F., Ju, F., Shi, H., Bilal, M. (2023). Engineering lipase at the molecular scale for cleaner biodiesel production - A review. Molecular Catalysis, 546, 113271. DOI: 10.1016/j.mcat.2023.113271
  5. de Sousa, I.G., Mota, G.F., Cavalcante, A.L.G., Rocha, T.G., da Silva Sousa, P., Holanda Alexandre, J.Y.N., da Silva Souza, J.E., Neto, F.S., Cavalcante, F.T.T., Lopes, A.A.S., dos Santos, J.C.S. (2023). Renewable processes of synthesis of biolubricants catalyzed by lipases. Journal of Environmental Chemical Engineering, 11(1), 109006. DOI: 10.1016/j.jece.2022.109006
  6. Qi, H., Du, Y., Hu, G., Zhang, L. (2018). Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: A biofriendly support for lipase immobilization. International Journal of Biological Macromolecules, 107, 2660–2666. DOI: 10.1016/j.ijbiomac.2017.10.150
  7. Vilas Bôas, R.N., de Castro, H.F. (2022). A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Biotechnology and Bioengineering, 119(3), 725–742. DOI: 10.1002/bit.28024
  8. Wan, D., Tian, L., Li, X., Li, B., Zhang, Q. (2018). A versatile strategy for enzyme immobilization: Fabricating lipase/inorganic hybrid nanostructures on macroporous resins with enhanced catalytic properties. Biochemical Engineering Journal, 139, 101–108. DOI: 10.1016/j.bej.2018.08.010
  9. Xiang, X., Suo, H., Xu, C., Hu, Y. (2018). Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids and Surfaces B: Biointerfaces, 165, 262–269. DOI: 10.1016/j.colsurfb.2018.02.033
  10. Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Razmjou, A., Yek, S.M.-G., Varma, R.S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Critical Reviews in Food Science and Nutrition, 61(19), 3160–3196. DOI: 10.1080/10408398.2020.1793726
  11. Xie, W., Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 159, 42–53. DOI: 10.1016/j.enconman.2018.01.021
  12. Zhong, N., Chen, W., Liu, L., Chen, H. (2019). Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: Their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chemistry, 271, 739–746. DOI: 10.1016/j.foodchem.2018.07.185
  13. Aggarwal, S., Chakravarty, A., Ikram, S. (2021). A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. International Journal of Biological Macromolecules, 167, 962–986. DOI: 10.1016/j.ijbiomac.2020.11.052
  14. Lim, J., Mohamad, Z. (2022). Enzymes immobilized polymeric supports for wastewater treatment application: A short review. Materials Today: Proceedings, 65(7), 2946-2952. DOI: 10.1016/j.matpr.2022.02.526
  15. Gao, Z., Chu, J., Jiang, T., Xu, T., Wu, B., He, B. (2018). Lipase immobilization on functionalized mesoporous TiO2: Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochemistry, 64, 152–159. DOI: 10.1016/j.procbio.2017.09.011
  16. Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1), 5–28. DOI: 10.1002/btpr.2581
  17. Enespa, Chandra, P., Singh, D.P. (2023). Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Critical Reviews in Food Science and Nutrition, 63(24), 6653–6686. DOI: 10.1080/10408398.2022.2038076
  18. Fatima, S., Faryad, A., Ataa, A., Joyia, F.A., Parvaiz, A. (2021). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68(3), 445–458. DOI: 10.1002/bab.2019
  19. Alabdalall, A.H., Al-Anazi, N.A., Aldakheel, L.A., Amer, F.H.I., Aldakheel, F.A., Ababutain, I.M., Alghamdi, A.I., Al-Khaldi, E.M. (2021). Application and characterization of crude fungal lipases used to degrade fat and oil wastes. Scientific Reports, 11(1), 1–10. DOI: 10.1038/s41598-021-98927-4
  20. Loffredi, E., Alamprese, C. (2023). Digestion Fate and Food Applications of Emulsions as Delivery Systems for Bioactive Compounds: Challenges and Perspectives. Food Reviews International, 1–25. DOI: 10.1080/87559129.2023.2249098
  21. Moentamaria, D., Muharja, M., Widjaja, T., Widjaja, A. (2019). Thermal stability and reusability of home-made co-immobilized lipase from Mucor miehei in polyurethane foam for the production of bio-flavor. IOP Conference Series: Materials Science and Engineering, 543(1), 012025. DOI: 10.1088/1757-899X/543/1/012025
  22. Moentamaria, D., Dewajani, H., Chumaidi, A., Nurmahdi, H., Sinduwati, C. (2020). Heterogeneous biocatalyst: Polyurethane foam coating technique with co-immobilized lipase for bio-flavor production. IOP Conference Series: Materials Science and Engineering, 732(1), 12003. DOI: 10.1088/1757-899X/732/1/012003
  23. Moentamaria, D., Muharja, M., Widjaja, T., Widjaja, A. (2019). A performance study of home-made co-immobilized lipase from mucor miehei in polyurethane foam on the hydrolysis of coconut oil to fatty acid. Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 391–403. DOI: 10.9767/bcrec.14.2.3848.391-403
  24. Zhou, W., Rao, Y., Zhuang, W., Ge, L., Lin, R., Tang, T., Wu, J., Li, M., Yang, P., Zhu, C., Wang, H., Ying, H. (2021). Improved enzymatic activity by oriented immobilization on graphene oxide with tunable surface heterogeneity. Composites Part B: Engineering, 216, 108788. DOI: 10.1016/j.compositesb.2021.108788
  25. Rosa, G.P., Barreto, M. do C., Pinto, D.C.G.A., Seca, A.M.L. (2020). A green and simple protocol for extraction and application of a peroxidase-rich enzymatic extract. Methods and Protocols, 3(2), 1–12. DOI: 10.3390/mps3020025
  26. Atiroğlu, V., Atiroğlu, A., Atiroğlu, A., Al-Hajri, A.S., Özacar, M. (2024). Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chemistry, 448, 138978. DOI: 10.1016/j.foodchem.2024.138978
  27. Yao, L.W., Ahmed Khan, F.S., Mubarak, N.M., Karri, R.R., Khalid, M., Walvekar, R., Abdullah, E.C., Mazari, S.A., Ahmad, A., Dehghani, M.H. (2022). Insight into immobilization efficiency of Lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent. Journal of Molecular Liquids, 354, 118849. DOI: 10.1016/j.molliq.2022.118849
  28. Ávila, S.N.S., Gutarra, M.L.E., Fernandez-Lafuente, R., Cavalcanti, E.D.C., Freire, D.M.G. (2019). Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis. Biochemical Engineering Journal, 144, 1–7. DOI: 10.1016/j.bej.2018.12.024
  29. Muharja, M., Hasanah, S., Sari, D.A.D., Khoirunnafiuddin, M., Fadilah, S.N., Darmayanti, R.F., Satrio, D., Ismayati, M. (2023). Enhanced oil removal by graphene oxide/N,N′-methylene bisacrylamide modified magnetite-cellulose aerogel derived from ramie stem waste: Adsorption performance, kinetics, and economical analysis. Bioresource Technology Reports, 24, 101645. DOI: 10.1016/j.biteb.2023.101645
  30. Muharja, M., Fadilah, S.N., Arimbawa, I.M., Hasanah, S., Darmayanti, R.F., Rois, M.F., Asrofi, M. (2022). Low-cost, sustainable, and high-capacity magnetite–cellulose adsorbent from Ramie stem (Boehmeria nivea L.) as oil spill solution. Chemical Papers, 76, 7429–7440. DOI: 10.1007/s11696-022-02423-6
  31. Darmayanti, R.F., Muharja, M., Widjaja, A., Widiastuti, N., Rachman, R.A., Widyanto, A.R., Halim, A., Satrio, D., Piluharto, B. (2023). Performance of modified hollow fiber membrane silver nanoparticles-zeolites Na–Y/PVDF composite used in membrane bioreactor for industrial wastewater treatment. Heliyon, 9(11), e21350. DOI: 10.1016/j.heliyon.2023.e21350
  32. Garlapati, V.K., Banerjee, R. (2013). Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Research, 2013, 6. DOI: 10.1155/2013/367410
  33. Muharja, M., Junianti, F., Nurtono, T., Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840(1), 30004. DOI: 10.1063/1.4982264
  34. Al-Dhabi, N.A., Valan Arasu, M., Vijayaraghavan, P., Esmail, G.A., Duraipandiyan, V., Kim, Y.O., Kim, H., Kim, H.-J. (2020). Probiotic and Antioxidant Potential of Lactobacillus reuteriLR12 and Lactobacillus lactisLL10 Isolated from Pineapple Puree and Quality Analysis of Pineapple-Flavored Goat Milk Yoghurt during Storage. Microorganisms, 8(10), 1461. DOI: 10.3390/microorganisms8101461
  35. Mahmod, S.S., Yusof, F., Jami, M.S., Khanahmadi, S., Shah, H. (2015). Development of an immobilized biocatalyst with lipase and protease activities as a multipurpose cross-linked enzyme aggregate (multi-CLEA). Process Biochemistry, 50(12), 2144–2157. DOI: 10.1016/j.procbio.2015.10.008
  36. Kaur, P., Jana, A.K., Jana, M.M. (2024). Immobilization of Candida rugosa lipase on optimized polyamidoamine dendrimer functionalized magnetic multiwalled carbon nanotubes for green manufacture of butyl butyrate ester. Molecular Catalysis, 553, 113779. DOI: 10.1016/j.mcat.2023.113779
  37. Khalid, A., Imran, M., Javaid, A., Latif, S. (2024). Catalyzing Transformation: Organo-Inorganic Materials Based Immobilized Lipases in the Ongoing Quest for Sustainable Biodiesel Production. Topics in Catalysis, in press. DOI: 10.1007/s11244-024-01915-x
  38. Binhayeeding, N., Yunu, T., Pichid, N., Klomklao, S., Sangkharak, K. (2020). Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochemistry, 95, 174–185. DOI: 10.1016/j.procbio.2020.02.007
  39. Chen, N., Chang, B., Shi, N., Yan, W., Lu, F., Liu, F. (2023). Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Critical Reviews in Biotechnology, 43(3), 369–383. DOI: 10.1080/07388551.2022.2038073
  40. Xie, R., Cui, C., Chen, B., Tan, T. (2015). Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification. Applied Biochemistry and Biotechnology, 177(3), 771–779. DOI: 10.1007/s12010-015-1771-3
  41. Muharja, M., Fadhilah, N., Darmayanti, R.F., Sangian, H.F., Nurtono, T., Widjaja, A. (2020). Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 786–797. DOI: 10.9767/BCREC.15.3.8870.786-797
  42. Mohammadi, N.S., Khiabani, M.S., Ghanbarzadeh, B., Mokarram, R.R. (2020). Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. Journal of Biotechnology, 323, 189–202. DOI: 10.1016/j.jbiotec.2020.07.002
  43. Muharja, M., Fadhilah, N., Nurtono, T., Widjaja, A. (2020). Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 84–95. DOI: 10.9767/bcrec.15.1.5337.84-95
  44. Salehi, M., Naseri-Nosar, M., Ebrahimi-Barough, S., Nourani, M., Khojasteh, A., Farzamfar, S., Mansouri, K., Ai, J. (2018). Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cellular and Molecular Neurobiology, 38(3), 703–713. DOI: 10.1007/s10571-017-0535-8
  45. Cui, C., Cai, D. (2018). Lipase immobilization on high water adsorbing capacity bagasse: applications in bio-based plasticizer synthesis. Molecular Biology Reports, 45(6), 2095–2102. DOI: 10.1007/s11033-018-4366-6
  46. Kashif, A., Rehman, R., Fuwad, A., Shahid, M.K., Dayarathne, H.N.P., Jamal, A., Aftab, M.N., Mainali, B., Choi, Y. (2022). Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Advances in Colloid and Interface Science, 306, 102718. DOI: 10.1016/j.cis.2022.102718
  47. Xue, J., Zhong, Q. (2014). Blending Lecithin and Gelatin Improves the Formation of Thymol Nanodispersions. Journal of Agricultural and Food Chemistry, 62(13), 2956–2962. DOI: 10.1021/jf405828s
  48. Abdulmalek, S.A., Li, K., Wang, J., Ghide, M.K., Yan, Y. (2021). Co-Immobilization of Rhizopus oryzae and Candida rugosa Lipases onto mMWCNTs@4-arm-PEG-NH2—A Novel Magnetic Nanotube–Polyethylene Glycol Amine Composite—And Its Applications for Biodiesel Production. International Journal of Molecular Sciences, 22(21), 11956. DOI: 10.3390/ijms222111956
  49. Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., Ashjari, M. (2015). Selective enrichment of polyunsaturated fatty acids by hydrolysis of fish oil using immobilized and stabilized Rhizomucor miehei lipase preparations. Food and Bioproducts Processing, 94, 414–421. DOI: 10.1016/j.fbp.2014.05.007
  50. Saikia, K., Rathankumar, A.K., Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K. (2021). Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. International Journal of Biological Macromolecules, 170, 583–592. DOI: 10.1016/j.ijbiomac.2020.12.178
  51. Sedenho, G.C., Colombo, R.N.P., Crespilho, F.N. (2023). Insights from Enzymatic Catalysis: A Path towards Bioinspired High-Performance Electrocatalysts. ChemCatChem, 15(15), e202300491. DOI: 10.1002/cctc.202300491
  52. Chen, K.-W., Sun, T.-Y., Wu, Y.-D. (2023). New Insights into the Cooperativity and Dynamics of Dimeric Enzymes. Chemical Reviews, 123(16), 9940–9981. DOI: 10.1021/acs.chemrev.3c00042
  53. Jeong, W.J., Lee, J., Eom, H., Song, W.J. (2023). A Specific Guide for Metalloenzyme Designers: Introduction and Evolution of Metal-Coordination Spheres Embedded in Protein Environments. Accounts of Chemical Research, 56(18), 2416–2425. DOI: 10.1021/acs.accounts.3c00336
  54. Corbella, M., Pinto, G.P., Kamerlin, S.C.L. (2023). Loop dynamics and the evolution of enzyme activity. Nature Reviews Chemistry, 7(8), 536–547. DOI: 10.1038/s41570-023-00495-w
  55. Ferraz, L.I.R., Possebom, G., Valandro Alvez, E., Luiz Cansian, R., Paroul, N., de Oliveira, D., Treichel, H. (2015). Application of home-made lipase in the production of geranyl propionate by esterification of geraniol and propionic acid in solvent-free system. Biocatalysis and Agricultural Biotechnology, 4(1), 44–48. DOI: 10.1016/j.bcab.2014.07.003
  56. Du, P., Xu, S., Xu, Z.-K., Wang, Z.-G. (2021). Bioinspired Self-Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 31(38), 2104819. DOI: 10.1002/adfm.202104819
  57. Patel, V., Gajera, H., Gupta, A., Manocha, L., Madamwar, D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochemical Engineering Journal, 95, 62–70. DOI: 10.1016/j.bej.2014.12.007
  58. Zhang, D.-H., Yuwen, L.-X., Peng, L.-J. (2013). Parameters Affecting the Performance of Immobilized Enzyme. Journal of Chemistry, 2013, 946248. DOI: 10.1155/2013/946248
  59. Badgujar, K.C., Bhanage, B.M. (2015). Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochemistry, 50(8), 1224–1236. DOI: 10.1016/j.procbio.2015.04.019
  60. Pires-Cabral, P., da Fonseca, M.M.R., Ferreira-Dias, S. (2010). Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate. Biochemical Engineering Journal, 48(2), 246–252. DOI: 10.1016/j.bej.2009.10.021

Last update:

No citation recorded.

Last update:

No citation recorded.