1Department of Chemical Engineering, Politeknik Negeri Malang, Malang 65145, Indonesia
2Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
3Department of Agro-industrial Technology, Faculty of Agriculture, University of Muhammadiyah Jember, Jalan Karimata 49, 68124 Jember, Indonesia
BibTex Citation Data :
@article{BCREC20130, author = {Dwina Moentamaria and Zakijah Irfin and Achmad Chumaidi and Arief Widjaja and Tri Widjaja and Maktum Muharja and Rizki Fitria Darmayanti}, title = {Development of a Novel Support Modification for Efficient Lipase Immobilization: Preparation, Characterization, and Application for Bio-flavor Production}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {19}, number = {2}, year = {2024}, keywords = {Immobilization; Bioflavor; Mucor miehei lipase; Polyurethane foam; Support modification}, abstract = { The low cost and excellent catalytic properties of lipase for industrial processes are highly desirable. A promising new approach involves the support modification of lipase and spacer arm, which enables the enhancement of lipase properties. This study investigates the immobilization of crude lipase from Mucor miehei onto a Polyurethane Foam (PUF) surface using various coating techniques. The PUF matrix was obtained through isocyanate and polyol reactions. Subsequently, the PUF was coated by adsorbing lipase and adding edible support material. The immobilized lipase was then utilized in the hydrolysis of coconut oil to produce fatty acids. Furthermore, the immobilized enzyme was employed in the esterification of fatty acids to produce bio-flavors. The results demonstrate that the attachment reaction using support material, namely lecithin, gelatin, MgCl 2 , and Polyethylene glycol 6000 (PEG), all of which are simple and edible, was able to enhance the stability and reusability of lipase. This immobilization technique increased triglyceride hydrolysis into FFA by 422%. The successful edible support modification of immobilized lipase from M. miehei on PUF, coupled with significantly enhanced enzyme stability and catalytic activity, offers a promising, environmentally friendly solution for diverse applications in the food industry. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {215--229} doi = {10.9767/bcrec.20130}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20130} }
Refworks Citation Data :
The low cost and excellent catalytic properties of lipase for industrial processes are highly desirable. A promising new approach involves the support modification of lipase and spacer arm, which enables the enhancement of lipase properties. This study investigates the immobilization of crude lipase from Mucor miehei onto a Polyurethane Foam (PUF) surface using various coating techniques. The PUF matrix was obtained through isocyanate and polyol reactions. Subsequently, the PUF was coated by adsorbing lipase and adding edible support material. The immobilized lipase was then utilized in the hydrolysis of coconut oil to produce fatty acids. Furthermore, the immobilized enzyme was employed in the esterification of fatty acids to produce bio-flavors. The results demonstrate that the attachment reaction using support material, namely lecithin, gelatin, MgCl2, and Polyethylene glycol 6000 (PEG), all of which are simple and edible, was able to enhance the stability and reusability of lipase. This immobilization technique increased triglyceride hydrolysis into FFA by 422%. The successful edible support modification of immobilized lipase from M. miehei on PUF, coupled with significantly enhanced enzyme stability and catalytic activity, offers a promising, environmentally friendly solution for diverse applications in the food industry. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)