skip to main content

Synthesis of Metal-Organic Framework (MOF) Cr-PTC-HIna for Heavy Metal Ion Adsorption

1Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

2Integrated Laboratory Centre, Faculty of Science and Technology UIN Syarif Hidayatullah Jakarta, Indonesia

3Research Center for Advanced Materials, National Research and Innovation Agency, KST BJ Habibie, South Tangerang 15314, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

View all affiliations
Received: 5 Nov 2023; Revised: 29 Jan 2024; Accepted: 29 Jan 2024; Available online: 5 Feb 2024; Published: 30 Apr 2024.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2024 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract
As an adsorbent material, Metal-Organic Framework (MOF) provides several advantages, such as large surface area and pore volume, as well as stability in aqueous systems both in acidic, basic, and neutral conditions. The research successfully made a metal organic framework (MOF) from chromium and perylene that was modulated by isonicotinic acid. This was done using three different methods: hydrothermal (Cr-PTC-HIna-HT), solvothermal (Cr-PTC-HIna-ST), and sonochemical (Cr-PTC-HIna-SC). The Cr-PTC-HIna-SC showed the greatest Pb2+ ion adsorption capacity. The optimum adsorption of Pb2+ ions occurred at 150 ppm Pb2+ ion concentration, pH 5, 90 minutes of contact time, and an adsorption capacity of 149.95 mg/g at 35 °C. The dominant adsorption isotherm model is the Langmuir isotherm model with R2 = 0.9867 and follows the pseudo-second-order. The selectivity test showed that Cr-PTC-HIna-SC MOF could adsorb more Cd2+ ions than Pb2+ ions, with 250 mg/g being the best amount.
Keywords: Adsorbent; Cd2+; Pb2+; Cr-PTC-HIna; sonochemical
Funding: UIN Syarif Hidayatullah Jakarta

Article Metrics:

  1. Forghani, M., Azizi, A., Livani, M. J., Kafshgari, L. A. (2020). Adsorption of lead(II) and chromium(VI) from aqueous environment onto metal-organic framework MIL-100(Fe): Synthesis, kinetics, equilibrium and thermodynamics. J Solid State Chem, 291(121636), pp. 1-9. doi: 10.1016/j.jssc.2020.121636
  2. Elaiwi, F. A., Sirkecioglu, A. (2020). Amine-functionalized metal organic frameworks MIL-101(Cr) adsorbent for copper and cadmium ions in single and binary solution. Sep Sci Technol, 55(18), pp. 3362–3374. doi: 10.1080/01496395.2019.1706571
  3. Menteri Kesehatan Indonesia, “Persyaratan Kualitas Air Minum,” 429/MENKES/PER/IV/2010, 2010
  4. Li, X., Wang, B., Cao, Y., Zhao, S., Wang, H., Feng, X., Zhou, J., Ma, X. (2019). Water contaminant elimination based on metal–organic frameworks and perspective on their industrial applications. ACS Sustain Chem Eng, 7(5), pp. 4548–4563. doi: 10.1021/acssuschemeng.8b05751
  5. Rojas, S., Horcajada, P. (2020). Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem Rev, 120(16), pp. 8378–8415. doi: 10.1021/acs.chemrev.9b00797
  6. Abdilah, F., Hulupi, M., Nabilah, N., & Nabilah, T. H. (2022). Sintesis Zn-BDC dengan Metode Sonokimia dan Aplikasinya pada Proses Adsorpsi Ion Logam Pb2+. REACTOR: Journal of Research on Chemistry and Engineering. 3(1), 10–16. DOI: http://dx.doi.org/10.52759/reactor.v3i1.48
  7. Mahreni, M., Ristianingsih, Y. (2020). A review on Metal-Organic Framework (MOF): Synthesis and Solid Catalyst Applications. Proceeding on Engineering and Science Series (ESS), 1(1), 638–645. https://doi.org/10.31098/ess.v1i1.159
  8. Zou, M., Dong, M., Zhao, T. (2022). Advances in metal-organic frameworks MIL-101(Cr). Int J Mol Sci, 23(16), pp. 9396. doi: 10.3390/ijms23169396
  9. Ghoochani, S. H., Heshmati, A., Hosseini, H. A., Darroudi, M. (2021). Sonochemical assisted removal and photocatalytic degradation of methylene blue dye by MIL-101(Cr) from aqueous solutions. Inorganic Chemistry Research, 5, pp. 230–237. https://doi.org/10.22036/icr.2021.288175.1105
  10. Adawiah, A., Oktavia, W., Saridewi, N. Azhar, F. M., Fitria, R. N., Gunawan, M. S., Komala, S., Zulys, A. (2022). Synthesis metal-organic framework (MOFs) Cr-PTC-HIna modulated isonicotinic acid for methylene blue photocatalytic degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), pp. 383–393. doi: 10.9767/bcrec.17.2.13930.383-393
  11. Budnyak, T. M., Vlasova, N. N., Golovkova, L. P., Slabon, A., Tertykh, V. A. (2019). Bile acids adsorption by chitoan-fumed silica enterosorbent. Colloid Interface Sci Commun, 32, p. 100194. doi: 10.1016/j.colcom.2019.100194
  12. Inyinbor, A. A., Adekola, F. A., Olatunji, G. A. (2015). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15(2016), 14–27. http://dx.doi.org/10.1016/j.wri.2016.06.001
  13. Chu, K. H. (2021). Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms. Ind. Eng. Chem. Res., 60(35), 13140–13147. https://doi.org/10.1021/acs.iecr.1c01788
  14. Foo, K. Y., Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(2010), 2–10. doi: 10.1016/j.cej.2009.09.013
  15. Mahrunnisa, N., Adawiah, A., Aziz, I., Zulys, A. (2023). Green synthesis of Cr-PTC-HIna metal organic frameworks (MOFs) and its application in methylene blue photocatalytic degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 18(3), pp. 362–374. doi: 10.9767/bcrec.18885
  16. Wahiduzzaman, Allmond, K., Stone, J., Harp, S., Mujibur, K. (2017). Synthesis and electrospraying of nanoscale MOF (metal organic framework) for high-performance CO2 adsorption membrane. Nanoscale Res Lett, 12(1), p. 6. doi: 10.1186/s11671-016-1798-6
  17. Ealias, A. M., Saravanakumar, M. P. (2019). A critical review on ultrasonic-assisted dye adsorption: mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Crit Rev Environ Sci Technol, 49(21), pp. 1959–2015. doi: 10.1080/10643389.2019.1601488
  18. Yu, K., Lee, Y. R., Seo, J. Y., Baek, K. Y., Chung, Y. M., Ahn, W. S. (2021). Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 316, p. 110985. doi: 10.1016/j.micromeso.2021.110985
  19. Israr, F., Chun, D., Kim, Y., Kim, D. K. (2016). High yield synthesis of Ni-BTC metal- organic framework with ultrasonic irradiation: role of polar aprotic DMF solvent. Ultrasonics Sonochemistry, 31, 93–101. https://doi.org/10.1016/j.ultsonch.2015.12.007
  20. Ningsih, D. A., Said, I., Ningsih, P. (2016). Adsorpsi logam timbal (Pb) dari larutannya dengan menggunakan adsorben dari tongkol jagung. Jurnal Akademika Kimia, 5(2), p. 55. doi: 10.22487/j24775185.2016.v5.i2.8002
  21. Liang, R., Li, Y., Huang, L., Wang, X., Hu, X., Liu, C., Chen, M., Chen, J. (2020). Pb2+ adsorption by ethylenediamine-modified pectins and their adsorption mechanisms. Carbohydr Polym, 234, p. 115911. doi: 10.1016/j.carbpol.2020.115911
  22. Heidari, A., Younesi, H., Mehraban, Z., Heikkinen, H. (2013). Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int J Biol Macromol, 61, pp. 251–263. doi: 10.1016/j.ijbiomac.2013.06.032
  23. Cherono, F., Mburu, N., Kakoi, B. (2021). Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7(11), p. e08254. doi: 10.1016/j.heliyon.2021.e08254
  24. Al-Maliky, E. A., Gzar, H. A., Al-Azawy, M. G. (2021). Determination of point of zero charge (PZC) of concrete particles adsorbents. IOP Conf Ser Mater Sci Eng, 1184(1), p. 012004. doi: 10.1088/1757-899X/1184/1/012004
  25. Zhu, H., Yuan, J., Tan, X., Zhang, W., Fang, M., Wang, X. (2019). Efficient removal of Pb2+ by Tb-MOFs: identifying the adsorption mechanism through experimental and theoretical investigations. Environ Sci Nano, 6(1), pp. 261–272. doi: 10.1039/C8EN01066H
  26. Sazali, N., Harun, Z., Sazali, N. (2020). A review on batch and column adsorption of various adsorbent towards the removal of heavy metal. Journal of Advance Research in Fluid Mechanics and Thermal Sciences, 67(2), pp. 66–88
  27. Wang, K., Gu, J., Yin, N. (2017). Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind Eng Chem Res, 56(7), pp. 1880–1887. doi: 10.1021/acs.iecr.6b04997
  28. Aisyahlika, S. Z., Firdaus, M. L., Elvia, R. (2018). Kapasitas adsorpsi arang aktif cangkang bintaro (Cerbera odollam) terhadap zat warna sintesis reactive RED-120 dan reactive BLUE-198. Jurnal Pendidikan dan Ilmu Kimia, 2(2), pp. 148–155. https://doi.org/10.33369/atp.v2i2.7483
  29. Ragadhita, R., Nandiyanto, A. B. D. (2021). How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indonesian Journal of Science and Technology, 6(1), pp. 205–234. doi: 10.17509/ijost.v6i1.32354
  30. Channa, A. M., Baytak, S., Memon, S. Q., Talpur, M. Y. (2019). Equilibrium, kinetic and thermodynamic studies of removal of phenol from aqueous solution using surface engineered chemistry. Heliyon, 5(2019), 01852. https://doi.org/10.1016/j.heliyon.2019.e01852
  31. Meila, U., Hasan, A., Purnamasari, I. (2021). Kinetika adsorpsi karbon aktif dalam penurunan konsentrasi logam tembaga (Cu) dan timbal (Pb). Jurnal Kinetika, 12(02), pp. 29–37
  32. Lu, M., Li, L., Shen, S., Chen, D., Han, W. (2019). Highly efficient removal of Pb2+ by a sandwich structure of metal–organic framework/GO composite with enhanced stability. New Journal of Chemistry, 43(2), pp. 1032–1037. doi: 10.1039/C8NJ05091K
  33. Masruhin, M., Rasyid, R., Yani, S. (2018). Penjerapan logam berat timbal (Pb) dengan menggunakan lignin hasil isolasi jerami padi. Journal of Chemical Process Engineering, 3(1), p. 6. doi: 10.33536/jcpe.v3i1.188
  34. Zhang, J., Xiong, Z., Li, C., Wu, C. (2016). Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J Mol Liq, 221, pp. 43–50. doi: 10.1016/j.molliq.2016.05.054
  35. Abbasi, A., Moradpour, T., Hecke, K. V. (2015). A new 3D cobalt (II) metal–organic framework nanostructure for heavy metal adsorption. Inorganica Chim Acta, 430, pp. 261–267. doi: 10.1016/j.ica.2015.03.019
  36. Wen, J., Fang, Y., Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere, 201, pp. 627–643. doi: 10.1016/j.chemosphere.2018.03.047
  37. Rahayu, E., Hasri, Pratiwi, D. E. (2023). Studi adsorpsi logam Cd (II) dan Pb (II) menggunakan adsorben rumput gajah. Analit: Analytical and Encironmental Chemistry, 6(1), pp. 56–67. DOI: 10.23960%2Faec.v8i1.2023.p

Last update:

No citation recorded.

Last update:

No citation recorded.