skip to main content

Bimetallic Ru-Sn as Effective Catalysts for the Selective Hydrogenation of Biogenic Platform Chemicals at Room Temperature

1Inorganic Materials and Catalysis (IMCat), Catalysis for Sustainable Energy & Environment (CATSuRe), Lambung Mangkurat University, 70714, Indonesia

2Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, 70714, Indonesia

3Centre for Advanced Chemistry, BRIN, KST BJ Habibie Serpong, Tangerang, Indonesia

4 Research Centre for Quantum Physics, BRIN, KST BJ Habibie Serpong, Tangerang, Indonesia

5 Department of Chemical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35, Banjarbaru, 70714, Indonesia

6 Research Collaboration Center for Tin Metal, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km 3, Cilegon, Indonesia

7 Department of Chemical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km 3, Cilegon, Indonesia

View all affiliations
Received: 31 Oct 2023; Revised: 21 Nov 2023; Accepted: 27 Nov 2023; Available online: 29 Nov 2023; Published: 11 Dec 2023.
Editor(s): Dmitry Yu. Murzin
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Supported bimetallic ruthenium-tin (denoted as Ru-Sn(x); x = molar ratio of Ru/Sn) catalysts were examined for room temperature (RT) hydrogenation of biogenic platform chemicals of levulinic acid (LA) to g-valerolactone (GVL). Six types of metal oxide support c.a. Nb2O5, TiO2, ZnO, ZrO2, g-Al2O3, active charcoal (AC), were employed as the support for Ru-Sn(x). Ru-Sn(3.0)/Nb2O5 (Ru/Sn = 3.0) that reduced at 500 oC demonstrated the highest yield of GVL (98%) at 30 oC, 30 bar H2 for 3 h. The increase in Sn loading amount (Ru/Sn = 1.5) resulted in decreasing of LA conversion (83%) under the same reaction conditions. Among the studied supported Ru-Sn catalysts, Nb2O5 and ZnO supports exhibited better catalytic performances than that other for RT hydrogenation of LA and various biogenic platform chemicals. The Ru-Sn(3.0)/Nb2O5 catalyst was characterized by means of various adsorption and spectroscopic techniques. The Ru-Sn(3.0)/Nb2O5 catalyst was found to be reusable without any significant loss of its activity. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA  License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: bimetallic ruthenium-tin; room temperature hydrogenation; biogenic platform chemicals; levulinic acid; valerolactone
Funding: BPDP Sawit GRS-16 under contract PRJ-49/2016; LPDP Riset Inovasi Indonesis Maju 2 (RIIM2) under contract 79/IV/KS/11/2022

Article Metrics:

  1. Kang, S., Fu, J., Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340–362. DOI: 10.1016/j.rser.2018.06.016
  2. Han, J., Sen, S.M., Alonso, D.M., Dumesic, J.A., Maravelias, C.T. (2014). A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels. Green Chemistry, 16 (2), 653–661. DOI: 10.1039/c3gc41511b
  3. Machado, G., Leon, S., Santos, F., Lourega, R., Dullius, J., Mollmann, M.E., Eichler, P. (2016). Literature Review on Furfural Production from Lignocellulosic Biomass. Natural Resources, 07 (03), 115–129. DOI: 10.4236/nr.2016.73012
  4. Lange, J.P., van der Heide, E., van Buijtenen, J., Price, R. (2012). Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem, 5 (1), 150–166. DOI: 10.1002/cssc.201100648
  5. Tang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., Lin, L. (2014). Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 40, 608–620. DOI: 10.1016/j.rser.2014.07.209
  6. de Vries, J.G. (2023). Industrial implementation of chemical biomass conversion. Current Opinion in Green and Sustainable Chemistry, 39, 100715. DOI: 10.1016/j.cogsc.2022.100715
  7. Xue, Z., Liu, Q., Wang, J., Mu, T. (2018). Valorization of levulinic acid over non-noble metal catalysts: Challenges and opportunities. Green Chemistry, 20 (19), 4391–4408. DOI: 10.1039/c8gc02001a
  8. Alonso, D.M., Wettstein, S.G., Dumesic, J.A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15, 584–595. DOI: 10.1039/C3GC37065H
  9. Serrano-Ruiz, J.C., West, R.M., Dumesic, J.A. (2010). Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering, 1 (1), 79–100. DOI: 10.1146/annurev-chembioeng-073009-100935
  10. Horváth, I.T., Mehdi, H., Fábos, V., Boda, L., Mika, L.T. (2008). g-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chemistry, 10 (2), 238–242. DOI: 10.1039/b712863k
  11. Pileidis, F.D., Titirici, M.M. (2016). Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, 9(6), 562–582. DOI: 10.1002/cssc.201501405
  12. Mascal, M., Dutta, S., Gandarias, I. (2014). Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: Simple, high-yield synthesis of branched C7-C10 gasoline-like hydrocarbons. Angewandte Chemie - International Edition, 53 (7), 1854–1857. DOI: 10.1002/anie.201308143
  13. Villa, A., Schiavoni, M., Chan-Thaw, C.E., Fulvio, P.F., Mayes, R.T., Dai, S., More, K.L., Veith, G.M., Prati, L. (2015). Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production. ChemSusChem, 8 (15), 2520–2528. DOI: 10.1002/cssc.201500331
  14. Rodiansono, R., Azzahra, A.S., Dewi, H.P., Adilina, I.B., Sembiring, K.C. (2023). MoO x -decorated Ru/TiO2 with a monomeric structure boosts the selective one-pot conversion of levulinic acid to 1,4-pentanediol. Catalysis Science & Technology, 13 (15), 4466–4476. DOI: 10.1039/D3CY00544E
  15. Zhao, Y., Fu, Y., Guo, Q.X. (2012). Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass. Bioresource Technology, 114, 740–744. DOI: 10.1016/j.biortech.2012.03.057
  16. Strádi, A., Molnár, M., Óvári, M., Dibó, G., Richter, F.U., Mika, L.T. (2013). Rhodium-catalyzed hydrogenation of olefins in γ-valerolactone-based ionic liquids. Green Chemistry, 15 (7), 1857–1862. DOI: 10.1039/c3gc40360b
  17. Strappaveccia, G., Luciani, L., Bartollini, E., Marrocchi, A., Pizzo, F., Vaccaro, L. (2015). γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chemistry, 17 (2), 1071–1076. DOI: 10.1039/c4gc01728e
  18. Mellmer, M.A., Sanpitakseree, C., Demir, B., Ma, K., Elliott, W.A., Bai, P., Johnson, R.L., Walker, T.W., Shanks, B.H., Rioux, R.M., Neurock, M., Dumesic, J.A. (2019). Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents. Nature Communications, 10 (1), 1–10. DOI: 10.1038/s41467-019-09090-4
  19. Nakagawa, Y., Tamura, M., Tomishige, K. (2017). Supported metal catalysts for total hydrogenation of furfural and 5-hydroxymethylfurfural. Journal of the Japan Petroleum Institute, 60 (1), 1–9. DOI: 10.1627/jpi.60.1
  20. Gundeboina, R., Gadasandula, S., Velisoju, V.K., Gutta, N., Kotha, L.R., Aytam, H.P. (2019). Ni-Al-Ti Hydrotalcite Based Catalyst for the Selective Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone. ChemistrySelect, 4 (1), 202–210. DOI: 10.1002/slct.201803407
  21. Lv, J., Rong, Z., Sun, L., Liu, C., Lu, A.H., Wang, Y., Qu, J. (2018). Catalytic conversion of biomass-derived levulinic acid into alcohols over nanoporous Ru catalyst. Catalysis Science and Technology, 8 (4), 975–979. DOI: 10.1039/c7cy01838j
  22. Li, S., Wang, Y., Yang, Y., Chen, B., Tai, J., Liu, H., Han, B. (2019). Conversion of levulinic acid to g-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. Green Chemistry, 21 (4), 770–774. DOI: 10.1039/c8gc03529f
  23. Schuette, H.A., Thomas, R.W. (1930). Normal valerolactone. III. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide. Journal of the American Chemical Society, 52 (7), 3010–3012. DOI: 10.1021/ja01370a069
  24. Tan, J., Cui, J., Cui, X., Deng, T., Li, X., Zhu, Y., Li, Y. (2015). Graphene-Modified Ru Nanocatalyst for Low-Temperature Hydrogenation of Carbonyl Groups. ACS Catalysis, 5 (12), 7379–7384. DOI: 10.1021/acscatal.5b02170
  25. Xiao, C., Goh, T.-W.W., Qi, Z., Goes, S., Brashler, K., Perez, C., Huang, W. (2016). Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS Catalysis, 6 (2), 593–599. DOI: 10.1021/acscatal.5b02673
  26. Wei, Z., Li, X., Deng, J., Wang, J., Li, H., Wang, Y. (2018). Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Molecular Catalysis, 448, 100–107. DOI: 10.1016/j.mcat.2018.01.024
  27. Van Nguyen, C., Matsagar, B.M., Yeh, J.Y., Chiang, W.H., Wu, K.C.W. (2019). MIL-53-NH2-derived carbon-Al2O3 composites supported Ru catalyst for effective hydrogenation of levulinic acid to Γ-valerolactone under ambient conditions. Molecular Catalysis, 475(1), 110478. DOI: 10.1016/j.mcat.2019.110478
  28. Li, S., Wang, Y., Yang, Y., Chen, B., Tai, J., Liu, H., Han, B. (2019). Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions. Green Chemistry, 21 (4), 770–774. DOI: 10.1039/c8gc03529f
  29. Zhang, K., Meng, Q., Wu, H., Yuan, T., Han, S., Zhai, J., Zheng, B., Xu, C., Wu, W., He, M., Han, B. (2021). Levulinic acid hydrogenation to γ-valerolactone over single Ru atoms on a TiO2@nitrogen doped carbon support. Green Chemistry, 23 (4), 1621–1627. DOI: 10.1039/d0gc04108d
  30. Ibrahim, I., Riski, M., Rodiansono, R. (2020). The effect of solvent in the hydrogenation of lauric acid to lauryl alcohol using Ru-Fe/TiO2 catalyst. IOP Conference Series: Materials Science and Engineering, 980, 012012. DOI: 10.1088/1757-899X/980/1/012012
  31. Rodiansono, R., Dewi, H.P., Mustikasari, K., Astuti, M.D., Husain, S., Sutomo, S. (2022). Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoO x -modified Ru catalysts under mild conditions. RSC Advances, 12 (21), 13319–13329. DOI: 10.1039/D2RA02103J
  32. Ain, N., Rodiansono, R., Mustikasari, K. (2019). Effect of Temperature, Pressure, and Reaction Time on Hydrogenation of Hexadecanoic Acid to 1-Hexadecanol Using a Ru-Sn(3.0)/C Catalyst. Jurnal Kimia Sains dan Aplikasi, 22 (4), 112–122. DOI: 10.14710/jksa.22.4.112-122
  33. Wettstein, S.G., Bond, J.Q., Alonso, D.M., Pham, H.N., Datye, A.K., Dumesic, J.A. (2012). RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental, 117–118, 321–329. DOI: 10.1016/j.apcatb.2012.01.033
  34. Vorotnikov, V., Eaton, T.R., Settle, A.E., Orton, K., Wegener, E.C., Yang, C., Miller, J.T., Beckham, G.T., Vardon, D.R. (2019). Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catalysis, 9 (12), 11350–11359. DOI: 10.1021/acscatal.9b02726
  35. Hidajat, M.J., Yun, G.N., Hwang, D.W. (2021). Highly selective and stable ZnO-supported bimetallic RuSn catalyst for the hydrogenation of octanoic acid to octanol. Molecular Catalysis, 512, 111770. DOI: 10.1016/j.mcat.2021.111770
  36. Armarego, W.L.F., Chai, C.L.L. (2009). Purification of laboratory chemicals. Elsevier/BH. DOI: 10.1016/C2009-0-26589-5
  37. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Dordrecht: Springer Netherlands. DOI: 10.1007/978-1-4020-2303-3
  38. Zhu, Z., Lu, Z., Li, B., Guo, S. (2006). Characterization of bimetallic Ru-Sn supported catalysts and hydrogenation of 1,4-cyclohexanedicarboxylic acid. Applied Catalysis A: General, 302 (2), 208–214. DOI: 10.1016/j.apcata.2006.01.005
  39. Upare, P.P., Kim, Y., Oh, K.R., Han, S.J., Kim, S.K., Hong, D.Y., Lee, M., Manjunathan, P., Hwang, D.W., Hwang, Y.K. (2021). A Bimetallic Ru3Sn7 Nanoalloy on ZnO Catalyst for Selective Conversion of Biomass-Derived Furfural into 1,2-Pentanediol. ACS Sustainable Chemistry and Engineering, 9 (51), 17242–17253. DOI: 10.1021/acssuschemeng.1c05322
  40. Fontana, J., Vignado, C., Jordao, E., Figueiredo, F.C.A., Carvalho, W.A. (2011). Evaluation of some supports to RuSn catalysts applied to dimethyl adipate hydrogenation. Catalysis Today, 172 (1), 27–33. DOI: 10.1016/j.cattod.2011.02.030
  41. Liu, F., Ftouni, J., Bruijnincx, P.C.A., Weckhuysen, B.M. (2019). Phase-Dependent Stability and Substrate-Induced Deactivation by Strong Metal-Support Interaction of Ru/TiO2 Catalysts for the Hydrogenation of Levulinic Acid. ChemCatChem, 11 (8), 2079–2088. DOI: 10.1002/cctc.201802040
  42. Lee, J.M., Upare, P.P., Chang, J.S., Hwang, Y.K., Lee, J.H., Hwang, D.W., Hong, D.Y., Lee, S.H., Jeong, M.G., Kim, Y.D., Kwon, Y.U. (2014). Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst. ChemSusChem, 7 (11), 2998–3001. DOI: 10.1002/cssc.201402311
  43. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2016). Efficient hydrogenation of levulinic acid in water using a supported Ni-Sn alloy on aluminium hydroxide catalysts. Catalysis Science and Technology, 6 (9), 2955–2961. DOI: 10.1039/c5cy01731a
  44. Tan, J., Cui, J., Deng, T., Cui, X., Ding, G., Zhu, Y., Li, Y. (2015). Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported ruthenium catalyst. ChemCatChem, 7 (3), 508–512. DOI: 10.1002/cctc.201402834
  45. Damayanti, A.P., Dewi, H.P., Ibrahim, I., Rodiansono, R. (2020). Selective hydrogenation of levulinic acid to gamma-valerolactone using bimetallic Pd-Fe catalyst supported on titanium oxide. IOP Conference Series: Materials Science and Engineering, 980, 012013. DOI: 10.1088/1757-899X/980/1/012013
  46. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21 (9), 2307–2315. DOI: 10.1039/c8gc03938k
  47. Rodiansono, R., Astuti, M.D., Husain, S., Nugroho, A., Sutomo, S. (2019). Selective conversion of 2-methylfuran to 1,4-pentanediol catalyzed by bimetallic Ni-Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (3), 529–541. DOI: 10.9767/bcrec.14.3.4347.529-541
  48. Dumitriu, E., Hulea, V. (2003). Effects of channel structures and acid properties of large-pore zeolites in the liquid-phase tert-butylation of phenol. Journal of Catalysis, 218 (2), 249–257. DOI: 10.1016/S0021-9517(03)00159-3
  49. Khandan, N., Kazemeini, M., Aghaziarati, M. (2008). Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Applied Catalysis A: General, 349 (1–2), 6–12. DOI: 10.1016/j.apcata.2008.07.029
  50. Tututi-Ríos, E., González, H., Cabrera-Munguia, D.A., Gutiérrez-Alejandre, A., Rico, J.L. (2022). Acid properties of Sn-SBA-15 and Sn-SBA-15-PrSO3H materials and their role on the esterification of oleic acid. Catalysis Today, 394–396, 235–246. DOI: 10.1016/j.cattod.2021.09.008
  51. Rodiansono, Azzahra, A.S., Ansyah, P.R., Husain, S., Shimazu, S. (2023). Rational design for the fabrication of bulk Ni 3 Sn 2 alloy catalysts for the synthesis of 1,4-pentanediol from biomass-derived furfural without acidic co-catalysts. RSC Advances, 13 (31), 21171–21181. DOI: 10.1039/D3RA03642A
  52. Tamura, M., Shimizu, K.I., Satsuma, A. (2012). Comprehensive IR study on acid/base properties of metal oxides. Applied Catalysis A: General, 433–434, 135–145. DOI: 10.1016/j.apcata.2012.05.008

Last update:

No citation recorded.

Last update:

No citation recorded.