skip to main content

MOF-199 and Ni-BTC: Synthesis, Physicochemical Properties, and Catalytic Activity in Oxidation of 5-Hydroxymethylfurfural

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok 16424, Indonesia

2Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Science (FMIPA), Universitas Indonesia, Depok 16424, Indonesia

3Department of Chemistry, Institut Teknologi Sumatera, Terusan Ryacudu, Jati Agung, Lampung 35365, Indonesia

Received: 20 Oct 2023; Revised: 6 Dec 2023; Accepted: 7 Dec 2023; Available online: 9 Dec 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Platform chemical 2,5-furandicarboxylic acid (FDCA) has potential applications to replace petroleum-based chemicals. Metal Organic Framework (MOF) can be used as a catalyst to oxidize 5-hydroxymethylfurfural (HMF), producing FDCA. MOF-199 and Ni-BTC were synthesized using solvothermal method with trimesic acid (benzene 1,3,5-tricarboxylic acid/H3BTC) as a linker and Cu or Ni as a metal nod. The physical and chemical properties of catalysts were discovered through characterization using  X-ray Diffraction (XRD), Fourier Transform Infra Red  (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX), and Ammonia Temperature-programmed Desorption (NH3-TPD). FDCA and its intermediate compounds were produced by converting HMF to FDCA in a small glass batch reactor. The yields of products were then determined by High-Performance Liquid Chromatography (HPLC). HPLC results indicated that there was no DFF (2,5-diformylfuran) signal, indicating that FDCA was formed by FFCA (5-formylfuroic acid) and HMFCA (5-hydroxymethylfuroic acid) formation reaction pathway. The maximum conversion (71%) was obtained using Ni-BTC as a catalyst at 130 °C for 5 h, with FDCA yield of 61.8%. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Supporting Information (SI) PDF
Keywords: MOF-199; Ni-BTC; 5-hydroxymethylfurfural; 2,5-furandicarboxylic acid
Funding: Indonesia Ministry of Education, Culture, Research, and Technology under contract NKB-978/UN2.RST/HKP.05.00/2022

Article Metrics:

  1. Al-Hamamre, Z., Saidan, M., Hararah, M., Rawajfeh, K., Alkhasawneh, H.E., Al-Shannag, M. (2017). Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, 67, 295–314. DOI: 10.1016/j.rser.2016.09.035
  2. Salanti, A., Zoia, L., Orlandi, M., Zanini, F., Elegir, G. (2010). Structural characterization and antioxidant activity evaluation of lignins from rice husk. Journal of Agricultural and Food Chemistry, 58(18), 10049–10055. DOI: 10.1021/jf102188k
  3. Jiang, Z., Zeng, Y., Hu, D., Guo, R., Yan, K., Luque, R. (2022). Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chemistry, 25(3), 871–892. DOI: 10.1039/d2gc03444a
  4. Tong, X., Ma, Y., Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1–2), 1–13. DOI: 10.1016/j.apcata.2010.06.049
  5. Saebea, D., Soisuwat, S., Arpornwichanop, A., Patcharavorachot, Y. (2023). Simulation-based Assessment of 2,5 Furandicarboxylic Acid Production from Oxidation of 5-Hydroxymethylfurfural. Chemical Engineering Transactions, 98, 87–92. DOI: 10.3303/CET2398015
  6. Gomes, M., Gandini, A., Silvestre, A.J.D., Reis, B. (2011). Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. Journal of Polymer Science, Part A: Polymer Chemistry, 49(17), 3759–3768. DOI: 10.1002/pola.24812
  7. De Jong, E., Dam, M.A., Sipos, L., Gruter, G.J.M. (2012). Furandicarboxylic acid (FDCA), A versatile building block for a very interesting class of polyesters. ACS Symposium Series, 1105, 1–13. DOI: 10.1021/bk-2012-1105.ch001
  8. Rose, M., Weber, D., Lotsch, B. V, Kremer, R.K., Goddard, R., Palkovits, R. (2013). Biogenic metal-organic frameworks: 2,5-Furandicarboxylic acid as versatile building block. Microporous and Mesoporous Materials, 181, 217–221. DOI: 10.1016/j.micromeso.2013.06.039
  9. Hayashi, E., Komanoya, T., Kamata, K., Hara, M. (2017). Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO2. ChemSusChem, 10(4), 654–658. DOI: 10.1002/cssc.201601443
  10. Megías-Sayago, C., Lolli, A., Bonincontro, D., Penkova, A., Albonetti, S., Cavani, F., Odriozola, J.A., Ivanova, S. (2020). Effect of Gold Particles Size over Au/C Catalyst Selectivity in HMF Oxidation Reaction. ChemCatChem, 12(4), 1177–1183. DOI: 10.1002/cctc.201901742
  11. Ahmed, M.S., Mannel, D.S., Root, T.W., Stahl, S.S. (2017). Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd-Bi-Te/C (PBT/C) Catalyst. Organic Process Research and Development, 21(9), 1388–1393. DOI: 10.1021/acs.oprd.7b00223
  12. Gong, W., Zheng, K., Ji, P. (2017). Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid. RSC Advances, 7(55), 34776–34782. DOI: 10.1039/c7ra05427k
  13. Kucherov, F.A., Romashov, L. V, Galkin, K.I., Ananikov, V.P. (2018). Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustainable Chemistry and Engineering, 6(7), 8064–8092. DOI: 10.1021/acssuschemeng.8b00971
  14. Stöcker, M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie - International Edition, 47(48), 9200–9211. DOI: 10.1002/anie.200801476
  15. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444. DOI: 10.1126/science.1230444
  16. Liao, Y. Te, Nguyen, V.C., Ishiguro, N., Young, A.P., Tsung, C.K., Wu, K.C.-W. (2020). Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 270, 118805. DOI: 10.1016/j.apcatb.2020.118805
  17. Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D. (1999). A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3](n). Science, 283(5405), 1148–1150. DOI: 10.1126/science.283.5405.1148
  18. Sarwar, E., Noor, T., Iqbal, N., Mehmood, Y., Ahmed, S., Mehek, R. (2018). Effect of Co-Ni Ratio in Graphene Based Bimetallic Electro-catalyst for Methanol Oxidation. Fuel Cells, 18(2), 189–194. DOI: 10.1002/fuce.201700143
  19. Thi, T.V.N., Luu, C.L., Hoang, T.C., Nguyen, T., Bui, T.H., Nguyen, P.H.D., Thi, T.P.P. (2013). Synthesis of MOF-199 and application to CO2 adsorption. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 35016. DOI: 10.1088/2043-6262/4/3/035016
  20. Yaqoob, L., Noor, T., Iqbal, N., Nasir, H., Zaman, N. (2019). Development of nickel-BTC-MOF-derived nanocomposites with rGO towards electrocatalytic oxidation of methanol and its product analysis. Catalysts, 9(10), 856. DOI: 10.3390/catal9100856
  21. Israr, F., Kim, D.K., Kim, Y., Chun, W. (2016). Scope of various solvents and their effects on solvothermal synthesis of Ni-BTC. Quimica Nova, 39(6), 669–675. DOI: 10.5935/0100-4042.20160068
  22. Ediati, R., Kahardian, M., Hartanto, D. (2016). Pengaruh Perbandingan Pelarut Etanol dan Dimetilformamida pada Sintesis Metal Organik Framework HKUST-1. Akta Kimia Indonesia, 1(1), 25–33. DOI: 10.12962/j25493736.v1i1.1425
  23. Kumar, R.S., Kumar, S.S., Kulandainathan, M.A. (2013). Efficient electrosynthesis of highly active Cu3(BTC) 2-MOF and its catalytic application to chemical reduction. Microporous and Mesoporous Materials, 168, 57–64. DOI: 10.1016/j.micromeso.2012.09.028
  24. Li, L., Liu, X.L., Geng, H.Y., Hu, B., Song, G.W., Xu, Z.S. (2013). A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. Journal of Materials Chemistry A, 1(35), 10292–10299. DOI: 10.1039/c3ta11478c
  25. Mahmoodi, N.M., Abdi, J. (2019). Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchemical Journal, 144, 436–442. DOI: 10.1016/j.microc.2018.09.033
  26. Chen, B., Zhao, X., Putkham, A., Hong, K., Lobkovsky, E.B., Hurtado, E.J., Fletcher, A.J., Thomas, K.M. (2008). Surface interactions and quantum kinetic molecular sieving for H 2 and D2 adsorption on a mixed metal-organic framework material. Journal of the American Chemical Society, 130(20), 6411–6423. DOI: 10.1021/ja710144k
  27. Israr, F., Chun, D., Kim, Y., Kim, D.K. (2016). High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent. Ultrasonics Sonochemistry, 31, 93–101. DOI: 10.1016/j.ultsonch.2015.12.007
  28. Sanaei, M., Fazaeli, R., Aliyan, H. (2019). Pd/MOF-199: As an efficient heterogeneous catalyst for the Suzukie Miyaura cross-coupling reaction. Journal of the Chinese Chemical Society, 66(10), 1290–1295. DOI: 10.1002/jccs.201800428
  29. Gao, W.Y., Leng, K., Cash, L., Chrzanowski, M., Stackhouse, C.A., Sun, Y., Ma, S. (2015). Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chemical Communications, 51(23), 4827–4829. DOI: 10.1039/c4cc09410g
  30. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F., Gumma, S. (2009). Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous and Mesoporous Materials, 117(1–2), 406–413. DOI: 10.1016/j.micromeso.2008.07.029
  31. Li, C., Zheng, M., Wang, A., Zhang, T. (2012). One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: Simultaneous conversion of cellulose, hemicellulose and lignin. Energy and Environmental Science, 5(4), 6383–6390. DOI: 10.1039/c1ee02684d
  32. Xue, Z., Zhang, J., Peng, L., Han, B., Mu, T., Li, J., Yang, G. (2014). Poly(ethylene glycol) stabilized mesoporous metal-organic framework nanocrystals: Efficient and durable catalysts for the oxidation of benzyl alcohol. ChemPhysChem, 15(1), 85–89. DOI: 10.1002/cphc.201300809
  33. Sun, B., Kayal, S., Chakraborty, A. (2014). Study of HKUST (Copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: An experimental Investigation with GCMC (grand canonical Monte-carlo) simulation. Energy, 76, 419–427. DOI: 10.1016/j.energy.2014.08.033
  34. Wang, Q.M., Shen, D., Bülow, M., Lau, M.L., Deng, S., Fitch, F.R., Lemcoff, N.O., Semanscin, J. (2002). Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 55(2), 217–230. DOI: 10.1016/S1387-1811(02)00405-5
  35. Zhou, H., Xu, H., Liu, Y. (2019). Aerobic oxidation of 5‑hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts. Applied Catalysis B: Environmental, 244, 965–973. DOI: 10.1016/j.apcatb.2018.12.046
  36. Su, H., Zhang, K.X., Zhang, B., Wang, H.H., Yu, Q.Y., Li, X.H., Antonietti, M., Chen, J.S. (2017). Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. Journal of the American Chemical Society, 139(2), 811–818. DOI: 10.1021/jacs.6b10710
  37. Oliveira, H., Scacchetti, F., Bezerra, F., Santos, J., Soares, G. (2023). Comprehensive evaluation of HKUST-1 as an efficient adsorbent for textile dyes. Environmental Science and Pollution Research, 30(37), 87242–87259. DOI: 10.1007/s11356-023-28455-3
  38. Sajid, M., Zhao, X., Liu, D. (2018). Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes. Green Chemistry, 20(24), 5427–5453. DOI: 10.1039/c8gc02680g

Last update:

No citation recorded.

Last update:

No citation recorded.