skip to main content

Synthesis and Characterization of TiO2-ZnO Nanocomposite Photocatalyst for the Removal of Basic Violet 14 as an Industrial Dye

1Department of Textile Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka, Bangladesh

2Department of Chemistry, University of Dhaka, Bangladesh

3Institute of Leather Engineering and Technology, University of Dhaka, Bangladesh

Received: 19 Oct 2023; Revised: 26 Nov 2023; Accepted: 27 Nov 2023; Available online: 27 Nov 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi, Rodiansono Rodiansono
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Binary nanocomposites are one of the promising photocatalysts for the photodegradation of toxic industrial organic dyes which are used as dying agents in different industries including garments and textiles, leather, paint and varnish industries. For this study, TiO2-ZnO nanocomposites were fabricated by the hydrothermal process; where ZnSO4.7H2O is used as a precursor and TiO2 is used as a supporting material. The prepared TiO2-ZnO nanocomposites were calcined at three distinct temperatures 300 °C, 400 °C, and 500 °C. These composite materials were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX), and Fourier Transform Infrared (FTIR) analyzes. Basic Violet 14 (BV14), an industrial dye, was modelled to examine the photocatalytic role of TiO2-ZnO under different experimental setups such as calcined temperatures, catalyst loading, concentrations of the BV14 dye, pH, and light sources. TiO2-ZnO prepared at 500 °C acted as the best photocatalyst among three nanocomposites and the prepared TiO2-ZnO worked better than solitary TiO2 and ZnO to decolorize the BV14 dye. In the presence of sunlight, UV light, and visible light the percentages of degradation of BV14 were found to be 81.78 %, 69.58 %, and 31.24 %, respectively. The maximum photodegradation corresponded to 0.175 g/100 mL of suspension of nanocomposite with an initial 3.0×105 M of BV14 having solution pH 6.88. The surface reaction constant and Langmuir-Hinshelwood adsorption constant were obtained to be 5.5×108 mol.L1.min1 and 1.7×108 L.mol1, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: Industrial effluent; photodegradation; Basic Violet 14; photocatalyst and nanocomposite.
Funding: Centre for Advanced Research in Sciences (CARS); University of Dhaka; Bangladesh University of Business and Technology (BUBT),

Article Metrics:

  1. Rabbi, A.M., Hasan, M.M., Akhter, A. (2016). Heavy metals content in inlet water, treated and untreated waste water of garments industries at Gazipur, Bangladesh. Environmental Science An Indian Journal, 12 (4), 133–136
  2. Castillo, M., Alonso, M.C., Riu, J., Barceló, D. (1999). Identification of Polar, Ionic, and Highly Water Soluble Organic Pollutants in Untreated Industrial Wastewaters. Environmental Science & Technology, 33(8), 1300–1306. DOI: 10.1021/es981012b
  3. Kabir, S.M., Hasan, M., Uddin, Z. (2019). Novel Approach to Dye Polyethylene Terephthalate (PET) Fabric in Supercritical Carbon Dioxide with Natural Curcuminoid Dyes. Fibres and Textiles in Eastern Europe, 27(3(135)), 65–70. DOI: 10.5604/01.3001.0013.0744
  4. Hasan, M., Hossain, M.B., Reza, S. (2014). Application of Purified Curcumin as Natural Dye on Cotton and Polyester. International Journal of Engineering, 14 (05), 17–23
  5. Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M., Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. DOI: 10.1016/S0927-0248(02)00255-6
  6. Modirshahla, N., Ali, M., Oskui, J., Reza, M. (2009). Investigation of the Efficiency of ZnO Photocatalyst in the Removal of p-Nitrophenol from Contaminated Water. Iranian Journal of Chemistry and Chemical Engineering, 28(1), 49–55. DOI: 10.30492/IJCCE.2009.6914
  7. Carp, O., Huisman, C.L., Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  8. Ahmad, N., Fitri, E. S., Wijaya, A., Amri, A., Mardiyanto, M., Royani, I., Lesbani, A. (2022). Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Composite Based Zn/Al Layered Double Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 17(4), 733–742. DOI: 10.9767/bcrec.17.4.15335.733-742
  9. Ahmad, N., Yuliasari, N., Arsyad, F., Royani, I., Mohadi, R., Lesbani, A. (2023). Catalytic oxidative desulfurization of dibenzothiophene by heterogeneous M2/Al-layered double hydroxide (M2+ = Zn, Mg, Ni) modified zinc oxide. Iranian Journal of Catalysis, 13, 35–45. DOI: 10.30495/ijc.2023.1972458.1973
  10. Saeed, M., Ibrahim, M., Muneer, M., Akram, N., Usman, M., Maqbool, I., Adeel, M., Nisar, A. (2021). ZnO–TiO2: Synthesis, Characterization and Evaluation of Photo Catalytic Activity towards Degradation of Methyl Orange. Zeitschrift Für Physikalische Chemie, 235(3), 225–237. DOI: 10.1515/zpch-2019-1536
  11. Hossain, M.A., Samad, M.A.B., Khan, D.H., Ara, N.J., Islam, T.S.A. (2018). Study of ZnO-TiO2 Composite Photocatalyst Mediated Photodegradation of Eosin Yellow. IOSR Journal of Environmental Science, Toxicology and Food Technology, 12(6), 58–67. DOI: 10.9790/2402-1206025867
  12. Wang, L., Fu, X., Han, Y., Chang, E., Wu, H., Wang, H., Li, K., Qi, X. (2013). Preparation, Characterization, and Photocatalytic Activity of TiO2 /ZnO Nanocomposites. Journal of Nanomaterials, 2013, 321459. DOI: 10.1155/2013/321459
  13. Talebi, S., Chaibakhsh, N., Moradi-Shoeili, Z. (2017). Application of nanoscale ZnS/TiO2 composite for optimized photocatalytic decolorization of a textile dye. Journal of Applied Research and Technology, 15(4), 378–385. DOI: 10.1016/j.jart.2017.03.007
  14. Almhana, N., Naser, Z., Al-Najjar, S., Al-Sharify, Z., Nail, T. (2022). Photocatalytic Degradation of Textile Dye from Wastewater by using ZnS/TiO2 Nanocomposites Material. Egyptian Journal of Chemistry, 65(131), 481–488. DOI: 10.21608/ejchem.2022.125852.5588
  15. Dhatshanamurthi, P., Subash, B., Krishnakumar, B., Shanthi, M. (2014). Highly active ZnS loaded TiO2 photocatalyst for mineralization of phenol red sodium salt under UV-A light. Indian Journal of Chemistry, 53, 820–823
  16. Marcì, G., Augugliaro, V., López-Muñoz, M. J., Martín, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R.J.D., Venezia, A.M. (2001). Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid−Solid Regime. The Journal of Physical Chemistry B, 105 (5), 1033–1040. DOI: 10.1021/jp003173j
  17. Siuleiman, S.A., Raichev, D.V., Bojinova, A.S., Dimitrov, D.T., Papazova, K.I. (2013). Nanosized composite ZnO/TiO2 thin films for photocatalytic applications. Bulgarian Chemical Communications, 45(4), 649–654
  18. Shalaby, A., Bachvarova-Nedelcheva, A., Dimitriev, Y., Iordanova, R., Stoyanova, A., & Sredkova, M. (2011). Antibacterial Properties of ZnTiO3 Prepared by Sol-Gel Method. Journal of Optoelectronics and Biomedical Materials, 3(2), 39–44
  19. Habib, M.A., Shahadat, M.T., Bahadur, N.M., Ismail, I.M.I., Mahmood, A.J. (2013). Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. International Nano Letters, 3(1), 5. DOI: 10.1186/2228-5326-3-5
  20. Jiang, Y., Sun, Y., Liu, H., Zhu, F., Yin, H. (2008). Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO2–ZnO. Dyes and Pigments, 78(1), 77–83. DOI: 10.1016/j.dyepig.2007.10.009
  21. Messaoudi, Z.A., Lahcene, D., Benaissa, T., Messaoudi, M., Zahraoui, B., Belhachemi, M., ChoukchouBraham, A. (2022). Adsorption and Photocatalytic Degradation of Crystal Violet Dye under Sunlight Irradiation Using Natural and Modified Clays by Zinc Oxide. Chemical Methodologies, 6(9), 661–676. DOI: 10.22034/chemm.2022.340376.1507
  22. Danish, M.S.S., Estrella, L.L., Alemaida, I.M.A., Lisin, A., Moiseev, N., Ahmadi, M., Nazari, M., Wali, M., Zaheb, H., Senjyu, T. (2021). Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals, 11(1), 80. DOI: 10.3390/met11010080
  23. Bozkurt Çırak, B., Caglar, B., Kılınç, T., Morkoç Karadeniz, S., Erdoğan, Y., Kılıç, S., Kahveci, E., Ercan Ekinci, A., Çırak, Ç. (2019). Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity. Materials Research Bulletin, 109, 160–167. DOI: 10.1016/j.materresbull.2018.09.039
  24. Mohamed, S.K., Hegazy, Sh.H., Abdelwahab, N.A., Ramadan, A.M. (2018). Coupled adsorption-photocatalytic degradation of crystal violet under sunlight using chemically synthesized grafted sodium alginate/ZnO/graphene oxide composite. International Journal of Biological Macromolecules, 108, 1185–1198. DPI: 10.1016/j.ijbiomac.2017.11.028
  25. Pragathiswaran, C., Smitha, C., Mahin Abbubakkar, B., Govindhan, P., Anantha Krishnan, N. (2021). Synthesis and characterization of TiO2/ZnO–Ag nanocomposite for photocatalytic degradation of dyes and anti-microbial activity. Materials Today: Proceedings, 45, 3357–3364. DOI: 10.1016/j.matpr.2020.12.664
  26. Ismail, M., Akhtar, K., Khan, M.I., Kamal, T., Khan, M.A., Asiri, A.M., Seo, J., Khan, S.B. (2019). Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Current Pharmaceutical Design, 25(34), 3645–3663. DOI: 10.2174/1381612825666191021142026
  27. Bao, H.V., Dat, N.M., Giang, N.T.H., Thinh, D.B., Tai, L.T., Trinh, D.N., Hai, N.D., Khoa, N.A.D., Huong, L.M., Nam, H.M., Phong, M.T., Hieu, N.H. (2021). Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surfaces and Interfaces, 23, 100950. DOI: 10.1016/j.surfin.2021.100950
  28. Hussain, S.M., Hussain, T., Faryad, M., Ali, Q., Ali, S., Rizwan, M., Hussain, A.I., Ray, M.B., Chatha, S.A.S. (2020). Emerging Aspects of Photo-catalysts (TiO2 & ZnO) Doped Zeolites and Advanced Oxidation Processes for Degradation of Azo Dyes: A Review. Current Analytical Chemistry, 17(1), 82–97. DOI: 10.2174/1573411016999200711143225
  29. Jaramillo-Fierro, X., González, S., Jaramillo, H.A., Medina, F. (2020). Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye. Nanomaterials, 10 (9), 1891. DOI: 10.3390/nano10091891
  30. Samsuri, S.A.M., Rahman, M.Y.A., Umar, A.A. (2017). Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells. Ionics, 23(7), 1897–1902. DOI: 10.1007/s11581-017-2010-4
  31. Zuas, O., Hamim, N. (2013). Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals. Materials Science, 19(4), 443–447. DOI: 10.5755/j01.ms.19.4.2732
  32. Gao, Y., Masuda, Y., Koumoto, K. (2004). Light-Excited Superhydrophilicity of Amorphous TiO2 Thin Films Deposited in an Aqueous Peroxotitanate Solution. Langmuir, 20(8), 3188–3194. DOI: 10.1021/la0303207
  33. Hamza, M.A., Saiof, F.N., Al-ithawi, A.S., Ameen, M.A., Yaseen, H.M. (2013). Prepared of Nd:TiO2 Nano Particles Powder as IR Filter via Sol-Gel. Advances in Materials Physics and Chemistry, 03(02), 174–177. DOI: 10.4236/ampc.2013.32024
  34. Chen, C., Yu, B., Liu, P., Liu, J., Wang, L. (2011). Investigation of nano-sized ZnO particles fabricated by various synthesis routes. Journal of Ceramic Processing Research, 12(4), 420–425
  35. Thamaphat, K., Limsuwan, P., Ngotawornchai, B. (2008). Phase Characterization of TiO2 Powder by XRD and TEM. Agriculture and Natural Resources, 42(5), 357–361
  36. Kim, D.S., Park, Y.S. (2006). Photocatalytic decolorization of rhodamine B by immobilized TiO2 onto silicone sealant. Chemical Engineering Journal, 116(2), 133–137. DOI: 10.1016/j.cej.2005.10.013
  37. Daneshvar, N., Aber, S., Seyeddorraji, M., Khataee, A., Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 58(1), 91–98. DOI: 10.1016/j.seppur.2007.07.016
  38. Behnajady, M., Modirshahla, N., Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1–3), 226–232. DOI: 10.1016/j.jhazmat.2005.10.022
  39. Muruganandham, M., Sobana, N., Swaminathan, M. (2006). Solar assisted photocatalytic and photochemical degradation of Reactive Black 5. Journal of Hazardous Materials, 137(3), 1371–1376. DOI: 10.1016/j.jhazmat.2006.03.030
  40. Akyol, A., Yatmaz, H.C., Bayramoglu, M. (2004). Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 54(1), 19–24. DOI: 10.1016/j.apcatb.2004.05.021
  41. Barka, N., Qourzal, S., Assabbane, A., Nounah, A., Ait-Ichou, Y. (2010). Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arabian Journal of Chemistry, 3(4), 279–283. DOI: 10.1016/j.arabjc.2010.06.016
  42. Muruganandham, M., Swaminathan, M. (2006). Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO-UV process. Dyes and Pigments, 68(2–3), 133–142. DOI: 10.1016/j.dyepig.2005.01.004
  43. Sahoo, C., Gupta, A.K., Pal, A. (2005). Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalination, 181(1–3), 91–100. DOI: 10.1016/j.desal.2005.02.014
  44. Hu, C., Tang, Y., Yu, J.C., Wong, P.K. (2003). Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst. Applied Catalysis B: Environmental, 40(2), 131–140. DOI: 10.1016/S0926-3373(02)00147-9
  45. Shimizu, N., Ogino, C., Dadjour, M.F., Murata, T. (2007). Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrasonics Sonochemistry, 14(2), 184–190. DOI: 10.1016/j.ultsonch.2006.04.002
  46. Chen, C.C. (2007). Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions. Journal of Molecular Catalysis A: Chemical, 264(1–2), 82–92. DOI: 10.1016/j.molcata.2006.09.013
  47. Siwińska-Stefańska, K., Kubiak, A., Piasecki, A., Goscianska, J., Nowaczyk, G., Jurga, S., Jesionowski, T. (2018). TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials, 11(5), 841. DOI: 10.3390/ma11050841
  48. Khan, M.S., García, M.F., Javed, M., Kubacka, A., Caudillo-Flores, U., Halim, S.A., Khan, A., Al-Harrasi, A., Riaz, N. (2021). Synthesis, Characterization, and Photocatalytic, Bactericidal, and Molecular Docking Analysis of Cu–Fe/TiO2 Photocatalysts: Influence of Metallic Impurities and Calcination Temperature on Charge Recombination. ACS Omega, 6(40), 26108–26118. DOI: 10.1021/acsomega.1c03102
  49. Daneshvar, N., Aber, S., Dorraji, M.S.S., Khataee, A.R., Rasoulifard, M.H. (2007). Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study. International Journal of Nuclear and Quantum Engineering, 1(5), 62–67

Last update:

No citation recorded.

Last update:

No citation recorded.