skip to main content

One-Step Hydrothermal Synthesis of TiO2 Nanotubes and Photodegradation Activity towards Diazinon

Department of Chemistry, Faculty of Mathematics and Natural Science, Jember University, Jember 68121, Indonesia

Received: 16 Oct 2023; Revised: 28 Nov 2023; Accepted: 28 Nov 2023; Available online: 29 Nov 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The study aimed to analyze how variations in TiO2/NaOH mole ratio, stirring time, and washing pH affect the formation process of TiO2 nanotubes (TNT) through one-stage hydrothermal. TiO2 micro powder was mixed with 10M NaOH with the variation of TiO2/NaOH mole ratio (0.005:1, 0.015:1, and 0.025:1). The hydrothermal process was then conducted at 130 ℃ in an autoclave for 24 h with stirring time intervals of 10, 15, and 20 minutes/h. The samples underwent 1 M HCl washing to produce diverse pH variations (pH = 2, pH = 3, and pH = 4). Characterization of the synthesized TNT was conducted using SEM, TEM, XRD, SAA, and UV-Vis DRS. After analysis of the micrographs revealed the fiber shape of the particles, it was noted that TNT particle size increased due to smaller mole ratio variation, longer stirring, and lower pH. The synthesized TNT featured a tubular morphology with an inner diameter of 3.30 nm, an outer diameter of 6.15 nm, and a wall thickness of 1.64 nm. The increase in sodium titanate content of the sample results in an increase in surface area. Additionally, small pore size contributes towards an increase in both surface area and total pore size. The best result of the TNT photocatalytic test against diazinon can be observed in the fifth sample with a mole ratio of 0.025:1, stirring time of 20 minutes/h, and washing pH of 3. With an irradiation time of 210 min, diazinon degradation reached 90%. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: TiO2 Nanotubes (TNT); Stirring Time; Mole Ratio; Washing pH; Photodegradation; Diazinon
Funding: University of Jember on Hibah Keris

Article Metrics:

  1. Rajendran, R., Vignesh, S., Sasireka, A., Suganthi, S., Raj, V., Baskaran, P., Shkir, M., Alfaify, S. (2021). Designing Ag2O Modified g-C3N4/TiO2 Ternary Nanocomposites for Photocatalytic Organic Pollutants Degradation Performance Under Visible Light: Synergistic Mechanism Insight. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 629, 1-13. DOI: 10.1016/j.colsurfa.2021.127472
  2. Zhai, X., Yang, X., Liu, X., Dong, Y., Zhang, W. (2023). Sensitive Photocatalytic Reduction of High Concentration Chromium-Containing Wastewater Driven by One-Step Hydrothermal Synthesis of Bi-Element Modified TiO2. Applied Surface Science, 622, 156976. DOI: 10.1016/j.apsusc.2023.156976
  3. Chen, J., Ma, J., Fan, Q., Zhang, W. (2023). An Eco-Friendly Metalless Tanning Process: Zr-Based Metal-Organic Frameworks as Novel Chrome-Free Tanning Agent. Journal of Cleaner Production, 382, 135263. DOI: 10.1016/j.jclepro.2022.135263
  4. Guo, R., Bao, Y., Kang, Q., Liu, C., Zhang, W., Zhu, Q. (2022). Solvent-Controlled Synthesis and Photocatalytic Activity of Hollow TiO2 Microspheres Prepared by The Solvothermal Method. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 633, 181-188. DOI: 10.1016/j.colsurfa.2021.127931
  5. Byrappa, K., Yoshimura, M. (2013). Handbook of Hydrothermal Technology Edition 2. USA : William Andrew
  6. Peng, T., Zhang, J., Ray, S., Saadat Ghareh Bagh, F., Fakhouri, H., Arefi-Khonsari, F., Lalman, J.A. (2019). Optimizing one-dimensional TiO2 for photocatalytic hydrogen production from a water-ethanol mixture and other electron donors. Journal of Environmental Chemical Engineering, 7(1), 102868. DOI: 10.1016/j.jece.2018.102868
  7. Sallem, F., Chassagnon, R., Megriche, A., El Maaoui, M., Millot, N. (2017). Effect of Mechanical Stirring and Temperature on Dynamic Hydrothermal Synthesis of Titanate Nanotubes. Journal of Alloys and Compounds, 722, 785–796. DOI: 10.1016/j.jallcom.2017.06.172
  8. Viet, P., Phan, B.T., Van Hieu, L., Thi, C.M. (2015). The Effect of Acid Treatment and Reactive Temperature on The Formation of TiO2 Nanotubes. Journal of Nanoscience and Nanotechnology, 15 (7), 5202–5206. DOI: 10.1016/j.spmi.2018.09.035
  9. Shahrezaei, M., Habibzadeh, S., Babaluo, A. A., Hosseinkhani, H., Haghighi, M., Hasanzadeh, A., Tahmasebpour, R. (2017). Study of synthesis parameters and photocatalytic activity of TiO2 nanostructures. Journal of Experimental Nanoscience, 12 (1), 45–61. DOI: 10.1080/17458080.2016.1258495
  10. Lee, C.K., Wang, C.C., Lyu, M.D., Juang, L.C., Liu, S.S., Hung, S.H. (2007). Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. Journal of Colloid and Interface Science, 316(2), 562–569. DOI: 10.1016/j.jcis.2007.08.008
  11. Kalantary, R.R., Shahamat, Y.D., Farzadkia, M., Esrafili, A., Asgharnia, H. (2015). Photocatalytic Degradation and Mineralization of Diazinon in Aqueous Solution Using Nano-TiO2 (Degussa, P25): Kinetic and Statistical Analysis. Desalination and Water Treatment, 55, 2. DOI: 10.1080/19443994.2014.928795
  12. Sharma, M., Mandal, M.K., Pandey, S., Kumar, R., Dubey, K.K. (2022). Visible-Light-Driven Photocatalytic Degradation of Tetracycline using Heterostructured Cu2O-TiO2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS Omega, 7(37), 33572–33586. DOI: 10.1021/acsomega.2c04576
  13. Park, H., Goto, T., Han, D.H., Cho, S., Nishida, H., Sekino, T. (2020). Low Alkali Bottom-Up Synthesis of Titanate Nanotubes Using a Peroxo Titanium Complex Ion Precursor for Photocatalysis. ACS Applied Nano Materials, 3(8), 7795–7803. DOI: 10.1021/acsanm.0c01347
  14. Tsai, C.-C., Teng, H. (2006). Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments. Chemistry of Materials, 18(2), 367–373. DOI: 10.1021/cm0518527
  15. Zhang, X., Wang, L., Hu, W., Zheng, H., Zhang, X. (2018). The synthesis of titanium dioxide nanoparticles from titanium slag and its use for low-temperature SCR catalyst. IOP Conference Series: Earth and Environmental Science, 208, 012011. DOI: 10.1088/1755-1315/208/1/012011
  16. Xu, S., Hou, Z., Chuai, X., Wang, Y. (2020). Overview of Secondary Nucleation: from Fundamentals to Application. Industrial and Engineering Chemistry Research, 59(41), 18335-18356. DOI: 10.1021/acs.iecr.0c03304
  17. Yoreo, J.J. (2003). Principles of Crystal Nucleation and Growth. Reviews in Mineralogy and Geochemistry, 54(1), 57–93. DOI: 10.2113/0540057
  18. Zulfiqar, M., Chowdhury, S., Omar, A.A. (2018). Hydrothermal Synthesis of Multiwalled TiO2 Nanotubes and Its Photocatalytic Activities for Orange II Removal. Separation Science and Technology (Philadelphia), 53(9), 1412–1422. DOI: 10.1080/01496395.2018.1444050
  19. Liu, N., Chen, X., Zhang, J., Schwank, J.W. (2014). A Review on TiO2-based Nanotubes Synthesized via Hydrothermal Method: Formation Mechanism, Structure Modification, and Photocatalytic Applications. Catalysis Today, 225, 34-51. DOI: 10.1016/j.cattod.2013.10.090
  20. Lee, Y., Li, Y., Zeng, H. (2013). ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing. Journal of Nanomaterials, 9, 196521. DOI: 10.1155/2013/196521
  21. Bardestani, R., Patience, G.S., Kaliaguine, S. (2019). Experimental Methods in Chemical Engineering: Specific Surface Area and Pore Size Distribution Measurements BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 97 (11), 2781–2791. DOI: 10.1002/cjce.23632
  22. Morgan, D.L., Liu, H.-W., Frost, R.L., Waclawik, E.R. (2010). Implications of Precursor Chemistry on the Alkaline Hydrothermal Synthesis of Titania/Titanate Nanostructures. The Journal of Physical Chemistry C, 114(1), 101–110. DOI: 10.1021/jp908508z
  23. Preda, S., Rutar, M., Umek, P., Zaharescu, M. (2015). A Study of Thermal Properties of Sodium Titanate Nanotubes Synthesized by Microwave-Assisted Hydrothermal Method. Materials Research Bulletin, 71, 98–105. DOI: 10.1016/j.materresbull.2015.07.015
  24. Subramaniam, M.N., Goh, P.S., Abdullah, N., Lau, W.J., Ng, B.C., Ismail, A.F. (2017). Adsorption and Photocatalytic Degradation of Methylene Blue using High Surface Area Titanate Nanotubes (TNT) Synthesized Via Hydrothermal Method. Journal of Nanoparticle Research, 19 (6), 1-13. DOI: 10.1007/s11051-017-3920-9
  25. Zhang, D., Dong, S. (2019). Progress in Natural Science: Materials International Challenges in Band Alignment between Semiconducting Materials: A Case of Rutile and Anatase TiO2. Progress in Natural Science: Materials International, 29 (3), 277-284. DOI: 10.1016/j.pnsc.2019.03.012
  26. Unal, H., Mete, E. (2014). Electronic Structures and Optical Spectra of Thin Anatase TiO2 Nanowires Through Hybrid Density Functional and Quasiparticle Calculations. Physical Review B, 89 (20), 205127. DOI: 10.1103/PhysRevB.89.205127
  27. Shah, T., Gul, T., Saeed, K. (2019). Photodegradation of Bromophenol Blue in Aqueous Medium using Graphene Nanoplates-Supported TiO2. Applied Water Science, 9(4), 1–7. DOI: 10.1007/s13201-019-0983-z
  28. Nasikhudin, N., Diantoro, M., Kusumaatmaja, A., Triyana, K. (2018). Study on Photocatalytic Properties of TiO2 Nanoparticles in Various pH Condition. Journal of Physics: Conference Series, 1011, 012069. DOI: 10.1088/1742-6596/1011/1/012069
  29. Reza, K.M., Kurny, A., Gulshan, F. (2017). Parameters Affecting The Photocatalytic Degradation of Dyes using TiO2­: A Review. Application Water Science, 7, 1569-1578. DOI: 10.1007/s13201-015-0367-y

Last update:

No citation recorded.

Last update:

No citation recorded.