1Department of Chemistry, Faculty of Science, University of Basra, 61004, Basra, Iraq
2Catalysis Science and Technology Research Centre, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
3Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
BibTex Citation Data :
@article{BCREC20053, author = {Faris Jasim Al-Doghachi and Ali M. A. Al-Najar and M. Safa-Gamal and Yun Hin Taufiq-Yap}, title = {Catalytic Dry-reforming of Methane Process with Co,Ni,Pd/Ca-La-O Mixed Oxides}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {18}, number = {4}, year = {2023}, keywords = {Biogas; Dry reforming; Catalyst deactivation; Syngas; H2 production}, abstract = { A surfactant-assisted co-precipitation method was used to prepare the catalysts Co,Ni,Pd/CaO, Co,Ni,Pd/Ca 0.97 La 3+ 0.03 O, Co,Ni,Pd/Ca 0.93 La 3+ 0.07 O, and Co,Ni,Pd/Ca 0.85 La 3+ 0.15 O (1% each of Co, Ni, and Pd). La 2 O 3 doping effect on the activity and stability of Co,Ni,Pd/CaO catalysts was investigated in dry reforming of methane. Catalysts were characterized by several techniques (X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FTIR), Temperature Programmed Desorption H 2 (H 2 -TPR), Transmission electron microscopes (TEM), and Temperature Gravimetric Analysis (TGA)) and were tested in a fixed-bed reactor at 900 °C and (Gas Hourly Specific Velocity (GHSV) = 15000 mL.g cat − 1 .h − 1 , atmospheric pressure). Adding La 2 O 3 had little effect on the morphology of the Co,Ni,Pd/CaO catalyst. However, it played a crucial role in enhancing the catalyst’s reducibility and CO 2 adsorption at high temperatures, as indicated by the activity and stability of the Co,Ni,Pd/CaO catalyst. The carbon deposition on utilized catalysts after 5 hours at 900 °C was examined using TEM and thermal gravimetric analysis (TGA) techniques. Compared to Co,Ni,Pd/CaO catalysts across the entire temperature range, the tri-metallic Co,Ni,Pd/Ca 0.85 La 3+ 0.15 O catalyst with a lanthanum promoter demonstrated a greater conversion of CH 4 (84%) and CO 2 (92 %) at a 1:1 CH 4 :CO 2 ratio. The selectivity of H 2 /CO reduced in the following order: Co,Ni,Pd/Ca 0.85 La 3+ 0.15 O > Co,Ni,Pd/Ca 0.93 La 3+ 0.07 O > Co,Ni,Pd/Ca 0.97 La 3+ 0.03 O > Co,Ni,Pd/CaO. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {675--687} doi = {10.9767/bcrec.20053}, url = {https://journal.bcrec.id/index.php/bcrec/article/view/20053} }
Refworks Citation Data :
A surfactant-assisted co-precipitation method was used to prepare the catalysts Co,Ni,Pd/CaO, Co,Ni,Pd/Ca0.97La3+0.03O, Co,Ni,Pd/Ca0.93La3+0.07O, and Co,Ni,Pd/Ca0.85La3+0.15O (1% each of Co, Ni, and Pd). La2O3 doping effect on the activity and stability of Co,Ni,Pd/CaO catalysts was investigated in dry reforming of methane. Catalysts were characterized by several techniques (X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FTIR), Temperature Programmed Desorption H2 (H2-TPR), Transmission electron microscopes (TEM), and Temperature Gravimetric Analysis (TGA)) and were tested in a fixed-bed reactor at 900 °C and (Gas Hourly Specific Velocity (GHSV) = 15000 mL.gcat−1.h−1, atmospheric pressure). Adding La2O3 had little effect on the morphology of the Co,Ni,Pd/CaO catalyst. However, it played a crucial role in enhancing the catalyst’s reducibility and CO2 adsorption at high temperatures, as indicated by the activity and stability of the Co,Ni,Pd/CaO catalyst. The carbon deposition on utilized catalysts after 5 hours at 900 °C was examined using TEM and thermal gravimetric analysis (TGA) techniques. Compared to Co,Ni,Pd/CaO catalysts across the entire temperature range, the tri-metallic Co,Ni,Pd/Ca0.85La3+0.15O catalyst with a lanthanum promoter demonstrated a greater conversion of CH4 (84%) and CO2 (92 %) at a 1:1 CH4:CO2 ratio. The selectivity of H2/CO reduced in the following order: Co,Ni,Pd/Ca0.85La3+0.15O > Co,Ni,Pd/Ca0.93La3+0.07O > Co,Ni,Pd/Ca0.97La3+0.03O > Co,Ni,Pd/CaO. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group. This agreement deals with the transfer or license of the copyright of publishing to Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group, while Authors still retain significant rights to use and share their own published articles. Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal (Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) and BCREC Publishing Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2024]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th January 2024)