skip to main content

Catalytic Dry-reforming of Methane Process with Co,Ni,Pd/Ca-La-O Mixed Oxides

1Department of Chemistry, Faculty of Science, University of Basra, 61004, Basra, Iraq

2Catalysis Science and Technology Research Centre, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia

3Institute of Plantation Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia

Received: 13 Oct 2023; Revised: 20 Nov 2023; Accepted: 21 Nov 2023; Available online: 24 Nov 2023; Published: 11 Dec 2023.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

A surfactant-assisted co-precipitation method was used to prepare the catalysts Co,Ni,Pd/CaO, Co,Ni,Pd/Ca0.97La3+0.03O, Co,Ni,Pd/Ca0.93La3+0.07O, and Co,Ni,Pd/Ca0.85La3+0.15O (1% each of Co, Ni, and Pd). La2O3 doping effect on the activity and stability of Co,Ni,Pd/CaO catalysts was investigated in dry reforming of methane. Catalysts were characterized by several techniques (X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FTIR), Temperature Programmed Desorption H2 (H2-TPR), Transmission electron microscopes (TEM), and Temperature Gravimetric Analysis (TGA)) and were tested in a fixed-bed reactor at 900 °C and (Gas Hourly Specific Velocity (GHSV) = 15000 mL.gcat1.h1, atmospheric pressure).  Adding La2O3 had little effect on the morphology of the Co,Ni,Pd/CaO catalyst. However, it played a crucial role in enhancing the catalyst’s reducibility and CO2 adsorption at high temperatures, as indicated by the activity and stability of the Co,Ni,Pd/CaO catalyst. The carbon deposition on utilized catalysts after 5 hours at 900 °C was examined using TEM and thermal gravimetric analysis (TGA) techniques. Compared to Co,Ni,Pd/CaO catalysts across the entire temperature range, the tri-metallic Co,Ni,Pd/Ca0.85La3+0.15O catalyst with a lanthanum promoter demonstrated a greater conversion of CH4 (84%) and CO2 (92 %) at a 1:1 CH4:CO2 ratio. The selectivity of H2/CO reduced in the following order: Co,Ni,Pd/Ca0.85La3+0.15O > Co,Ni,Pd/Ca0.93La3+0.07O > Co,Ni,Pd/Ca0.97La3+0.03O > Co,Ni,Pd/CaO. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Biogas; Dry reforming; Catalyst deactivation; Syngas; H2 production

Article Metrics:

  1. Taufiq‐Yap, Y.H., Al‐Doghachi, F.A. (2018). CO2 reforming of methane over Ni/MgO catalysts promoted with Zr and La oxides. ChemistrySelect, 3(2), 816-827. DOI: 10.1002/slct.201701883
  2. le Saché, E., Santos, J., Smith, T., Centeno, M., Arellano, H., Odriozola, J., Reina, T. (2018). Multicomponent Ni-CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. Journal of CO2 Utilization, 25, 68-78. DOI: 10.1016/j.jcou.2018.03.012
  3. Stroud, T., Smith, T., Saché, L., Santos, J., Centeno, M., Arellano, H., Odriozola, J., Reina, T. (2018). Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Applied Catalysis B: Environmental, 224, 125-135. DOI: 10.1016/j.apcatb.2017.10.047
  4. Acharya, K., Al-Fatesh, A.S., Almutairi, G., Fakeeha, A.H., Ibrahim, A.A., Abasaeed, A.E., Kumar, R. (2023). The Role of Strontium as an Economic Promoter Over WO3+-ZrO2 Supported Ni Catalyst for H2 Production through Dry Reforming of Methane. Catalysis Letters, 1-13. DOI: 10.1007/s10562-023-04450-8
  5. Al-Doghachi, F.A.J., Murad, D.M., Al-Niaeem, H.S., Al-Jaberi, S.H., Mohamad, S., Taufiq-Yap, Y.H. (2021). High Active Co/Mg1-xCex3+O Catalyst: Effects of Metal-Support Promoter Interactions on CO2 Reforming of CH4 Reaction. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 97-110. DOI: 10.9767/bcrec.16.1.9969.97-110
  6. Dębek, R., Motak, M., Grzybek, T., Galvez, M., Da Costa, P. (2017). A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming methane. Catalysts, 7, 32. DOI: 10.3390/catal7010032
  7. Hambali, H., Jalil, A., Abdulrasheed, A., Siang, J., Gambo, Y., Umar, A., (2022). Zeolite and clay based catalysts for CO2 reforming of methane to syngas: a review. International Journal of Hydrogen Energy, 47(72), 30759-30787. DOI: 10.1016/j.ijhydene.2021.12.214
  8. Taherian, Z., Gharahshiran, V.S., Orooji, Y., Karimi-Maleh, H., Khataee, A. (2023). The study of CO2 reforming of methane over Ce/Sm-promoted NiCaAl catalysts. Process Safety and Environmental Protection, 174, 235-242. DOI: 10.1016/j.psep.2023.03.046
  9. Schwengber, C., da Silva, F., Schaffner, R., Fernandes, N., Ferracin, R., Bach, V., Alves, H. (2016). Methane dry reforming using Ni/Al2O3 catalysts: evaluation of the effects of temperature, space velocity and reaction time. Journal of Environmental Chemical Engineering, 4(3), 3688-3695. DOI: 10.1016/j.jece.2016.07.001
  10. Wang, J., Fan, G., Li, F. (2012). Carbon-supported Ni catalysts with enhanced metal dispersion and catalytic performance for hydrochlorination of chlorobenzene. RSC Advances, 2, 9976-9985. DOI: 10.1039/C2RA21216A
  11. Al-Doghachi, F.A., Jassim, A.F., Taufiq-Yap, Y.H. (2020). Enhancement of CO2 Reforming of CH4 Reaction Using Ni,Pd,Pt/Mg1−xCex4+O and Ni/Mg1−xCex4+O Catalysts. Catalysts, 10(11), 1240. DOI: 10.3390/catal10111240
  12. Álvarez Moreno, A., Ramirez-Reina, T., Ivanova, S., Roger, A.C., Centeno, M.Á. and Odriozola, J.A. (2021). Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: Understanding the synergies of the selected promoters. Frontiers in Chemistry, 9, 694976. DOI: 10.3389%2Ffchem.2021.694976
  13. Zhang, X., Zhang, L.H., You, X., Peng, C.X., Liu, W., Fang, X., Wang, Z., Zhang, N., Wang, X. (2018). Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: a catalyst with superior sintering resistance and hydrothermal stability for dry methane reforming. Applied Catalysis B: Environmental, 224, 488-499. DOI: 10.1016/j.apcatb.2017.11.001
  14. Liu, W., Li, L., Zhang, X., Wang, Z., Wang, X., Peng, H. (2018). Design of Ni-ZrO2-SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. Journal of CO2 Utilization, 27, 297-307. DOI: 10.1016/j.jcou.2018.08.003
  15. Peng, H., Zhang, X., Han, X., You, X., Lin, S., Chen, H., Liu, W., Wang, X., Zhang, N., Wang, Z., Wu, P., Zhu, H., Dai, S. (2019). Catalysts in coronas: a surface spatial confinement strategy for high-performance catalysts in dry methane reforming. ACS Catalysis, 9, 9072-9080. DOI: 10.1021/acscatal.9b00968
  16. Nazemi, M., Sheibani, S., Rashchi, F., Gonzalez-DelaCruz, V., Caballero, A. (2012). Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechanochemical synthesis. Advanced Powder Technology, 23, 833-838. DOI: 10.1016/j.apt.2011.11.004
  17. Yuan, X., Li, B., Wang, X., Li, B. (2022). Synthesis gas production by dry reforming of methane over Neodymium-modified hydrotalcite-derived nickel catalysts. Fuel Processing Technology, 227, 107104. DOI: 10.1016/j.fuproc.2021.107104
  18. lvarez, A., Ramirez, T., Ivanova, S., Roger, A., Centeno, M., Odriozola, J.A. (2021). Bimetallic Ni-Ru and Ni–Re catalysts for dry reforming of methane: Understanding the synergies of the selected promoters. Frontiers in Chemistry, 9, 694976. DOI: 10.3389%2Ffchem.2021.694976
  19. Al-Doghachi, F.A., Rashid, U., Taufiq-Yap, Y. H. (2016). Investigation of Ce (III) promoter effects on the tri-metallic Pt,Pd,Ni/MgO catalyst in dry-reforming of methane. RSC advances, 6(13), 10372-10384. DOI: 10.1039/C5RA25869C
  20. Law, Z.X., Pan, Y.T., Tsai, D.H. (2022). Calcium looping of CO2 capture coupled to syngas production using Ni-CaO-based dual functional material. Fuel, 328, 125202. DOI: 10.1016/j.fuel.2022.125202
  21. Oyama, S., Hacarlioglu, P., Gu, Y., Lee, D. (2012). Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. International Journal of Hydrogen Energy, 37, 10444-10450. DOI: 10.1016/j.ijhydene.2011.09.149
  22. Al-Doghachi, F.A., Rashid, U., Zainal, Z., Saiman, M.I., Taufiq-Yap, Y.H. (2015). Influence of Ce2O3 and CeO2 promoters on Pd/MgO catalysts in the dry-reforming of methane. RSC Advances, 5(99), 81739-81752. DOI: 10.1039/C5RA15825G
  23. Ahmad, Y., Mohamed, A., Kumar, A., Al-Qaradawi, S. (2021). Solution combustion synthesis of Ni/La2O3 for dry reforming of methane: tuning the basicity via alkali and alkaline earth metal oxide promoters. RSC Advances, 11(53), 33734-33743. DOI: 10.1039%2Fd1ra05511a
  24. Hossain, M.A., Ayodele, B.V., Cheng, C.K., Khan, M.R. (2018). Syngas production from catalytic CO2 reforming of CH4 over CaFe2O4 supported Ni and Co catalysts: full factorial design screening. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1), 57-73. DOI: 10.9767/bcrec.13.1.1197.57-73
  25. Devaraja, P., Avadhani, D., Prashant, S., Nagabhushana, H., Sharma, S., Nagabhushana, B., Nagaswarupa, H. (2014). Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 4, 810-834. DOI: 10.1016/j.saa.2013.08.050
  26. Messaoudi, H., Thomas, S., Slyemi, S., Djaidja, A., Barama, A. (2020). Syngas production via methane dry reforming over La-Ni-Co and La-Ni-Cu catalysts with spinel and perovskite structures. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 885-897. DOI: 10.9767/bcrec.15.3.9295.885-897
  27. Kim, H., Kang, K., Kwak, H. (2009). Preparation of supported Ni catalysts with a core/shell structure and their catalytic tests of partial oxidation of methane, International Journal of Hydrogen Energy, 34, 3351-3359. DOI: 10.1016/j.ijhydene.2009.02.036
  28. Sandoval-Diaz, L.E., Schlögl, R., Lunkenbein, T. (2022). Quo vadis dry reforming of Methane? A review on its chemical, environmental, and industrial prospects. Catalysts, 12(5), 465. DOI: 10.3390/catal12050465
  29. Bao, Z., Lu, Y., Han, J., Li, Y., Yu, F. (2015). Highly Active and Stable Ni-based Bimodal Pore Catalyst for Dry Reforming of Methane. Applied Catalysis A: General, 491, 116-126. DOI: 10.1016/j.apcata.2014.12.005
  30. Ahmed, W., Awadallah, A., Aboul, E. (2016). Ni/CeO2-Al2O3 Catalysts for Methane Thermo-catalytic Decomposition to COx-free H2 Production. International Journal of Hydrogen Energy, 41, 18484-18493. DOI: 10.1016/j.ijhydene.2016.08.177
  31. James, O., Maity, S. (2016). Temperature programmed reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts. Journal of Petroleum Technology and Alternative Fuels, 7, 1-12. DOI: 10.5897/JPTAF2015.0122
  32. Al-Najar, A.M., Al-Doghachi, F.A., Al-Riyahee, A.A., Taufiq-Yap, Y.H. (2020). Effect of La2O3 as a promoter on the Pt, Pd, Ni/MgO catalyst in dry reforming of methane reaction. Catalysts, 10(7), 750. DOI: 10.3390/catal10070750
  33. Gonzalez-Delacruz, V., Ternero, F., Pereñíguez, R., Caballero, A. (2010). Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane. Applied Catalysis A: General, 384, 1-9. DOI: 10.1016/j.apcata.2010.05.027
  34. Slimani, R., El Ouahabi, I., Abidi, F. (2014). Calcined eggshells as a new bio sorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms, and error analysis. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1578-1587. DOI: 10.1016/j.jtice.2013.10.009
  35. Appari, S., Janardhanan, V.M., Bauri, R., Jayanti, S., Deutschmann, O. (2014). Detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Applied Catalysis A: General, 471, 118-125. DOI: 10.1016/j.apcata.2013.12.002
  36. Kehres, J., Jakobsen, J., Andreasen, J., Wagner, J., Liu, H., Molenbroek, A., Vegge, T. (2012). Dynamical Properties of a Ru/MgAl2O4 Catalyst During Reduction and Dry Methane Reforming. The Journal of Physical Chemistry C, 116, 21407-21415. DOI: 10.1021/jp3069656
  37. Meng, Z., Wang, Z. (2021). The Effect of Different Promoters (La2O3, CeO2, and ZrO2) on the Catalytic Activity of the Modified Vermiculite-Based Bimetallic NiCu/EXVTM-SiO2 Catalyst in Methane Dry Reforming. ACS Omega, 6(44), 29651-29658. DOI: 10.1021/acsomega.1c03959
  38. Li, X., Li, D., Tian, H., Zeng, L., Zhao, Z.-J., Gong, J. (2017). Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Applied Catalysis B: Environmental, 202, 683–694. DOI: 10.1016/j.apcatb.2016.09.071
  39. Taherian, Z., Yousefpour, M., Tajally, M. and Khoshandam, B. (2017). Catalytic performance of Samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 42(39), 24811–24822. DOI: 10.1016/j.ijhydene.2017.08.080
  40. Huang, Y., Li, X., Zhang, Q., Vinokurov, V.A., Huang, W. (2022). Carbon deposition behaviours in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel, 310, 122449. DOI: 10.1016/j.fuel.2021.122449
  41. Siang, T.J., Singh, S., Omoregbe, O., Bach, L.G., Phuc, N.H.H., Vo, D.V.N. (2018). Hydrogen production from CH4 dry reforming over bimetallic Ni–Co/Al2O3 catalyst. Journal of the Energy Institute, 91(5), 683–694. DOI: 10.1016/j.joei.2017.06.001
  42. Mohd Jailani, M.S.A., Miskan, S.N., Bahari, M.B., Setiabudi, H.D. (2023). Optimization of dry reforming of methane over Yttrium Oxide-Cobalt/Mesoporous alumina using response surface methodology. Materials Today: Proceedings, In Press. DOI: 10.1016/j.matpr.2023.04.690
  43. Steinhauer, B., Kasireddy, M., Radnik, J., Martin, A. (2009). Development of Ni-Pd Bimetallic Catalysts for the Utilization of Carbon Dioxide and Methane by Dry Reforming. Applied Catalysis A: General, 366, 333-341. DOI: 10.1016/j.apcata.2009.07.021
  44. Istadi, I., Anggoro, D., Amin, N., Ling, D. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst, Bulletin of Chemical Reaction Engineering & Catalysis, 6, 129-136. DOI: 10.9767/bcrec.6.2.1213.129-136
  45. Miguel, S., Vilella, I., Maina, S., Alonso, D.J., Martinez, M.R., Gomez, I.M. (2012). Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Applied Catalysis A: General, 435, 10-18. DOI: 10.1016/j.apcata.2012.05.030

Last update:

No citation recorded.

Last update:

No citation recorded.