skip to main content

Preparation, Characterization, and Photocatalytic Activity of Ni-Cd/Al2O3 Composite Catalyst

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jln. Rawamangun Muka, Jakarta Timur 13220, Indonesia

2Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Jakarta, Jln. Rawamangun Muka, Jakarta Timur, 13220, Indonesia

3Research Center for Metallurgy - National Research and Innovation Agency, KST B.J. Habibie, Serpong, 15314, Indonesia

Received: 29 Sep 2023; Revised: 28 Oct 2023; Accepted: 29 Oct 2023; Available online: 31 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

This study was conducted to determine the effect of the radiation source and radiation time on the methylene blue (MB) solution by adding Ni-Cd/Al2O3 to the percent degradation of MB. To investigate similar purposes, the pH of the MB solution varied as well. The preparation, characterization, and photocatalytic activity of Ni-Cd/Al2O3 are three steps in this research. The Ni-Cd was prepared by mixing Ni(NO3)2.6H2O and Cd(NO3)2.4H2O. Various concentrations of Ni-Cd were mixed with Al2O3, then heated, stirred, dried, and calcined to form Ni-Cd/Al2O3 powder. The dried powder catalysts were characterized using Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-emmett-teller (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Diffused reflectance spectrometer spectra (DR-UV-Vis). Higher degradation was observed at pH 11, when MB was degraded by 68% and 76% using the 5Ni-2Cd/Al2O3 and 6Ni-1Cd/Al2O3 catalysts, respectively. The 6Ni-1Cd/Al2O3 sample has higher absorption, less surface area, and less band gap; therefore, it has higher performance against degraded MB in the solution. In summary, 6Ni-1Cd/Al2O3 is capable of degrading MB and can be utilized in MB dye waste. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photodegradation; Methylene blue; Radiation source; Radiation time; pH
Funding: Universitas Negeri Jakarta under contract 74 /SPK PENELITIAN/5.FMIPA//2020

Article Metrics:

  1. Sagadevan, S., Fatimah, I., Egbosiub, T.C., Alshahateet, S.F., Lett, J.A., Weldegebrieal, G.K., Le, M.V., Johan, M.R. (2022). Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 430–450. DOI: 10.9767/bcrec.17.2.13948.430-450
  2. Hettige, H., Mani, M., Wheeler, D. (2000). Industrial Pollution in Economic Development: The Environmental Kuznets Curve Revisited. Journal of Development Economics, 62(2), 27–58. DOI: 10.1016/S0304-3878(00)00092-4
  3. Hariharan, C. (2006). Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General, 304, 55–61. DOI: 10.1016/j.apcata.2006.02.020
  4. Dharwal, M., Parashar, D., Shuaibu, M.S., Abdullahi, S.G., Abubakar, S., Bala, B.B. (2022). Water pollution: Effects on health and environment of Dala LGA, Nigeria. Materials Today: Proceedings, 49(8), 3036–3039. DOI: 10.1016/j.matpr.2020.10.496
  5. Lestari, S., Muflihah, M., Kusumawardani, R., Nurhadi, M., Mangesa, Y., Ridho, F.I., Adawiyah, R., Ambarwati, P., Rahma, S., Yuan Lai, S., Nur, H. (2022). Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 22–31. DOI: 10.9767/bcrec.17.1.12473.22-31
  6. Chung, K.-T. (2016). Azo Dyes and Human Health: A Review. Journal of Environmental Science and Health, Part C, 34(4), 233–261. DOI: 10.1080/10590501.2016.1236602
  7. Sankar, M., Jothibas, M., Muthuvel, A., Rajeshwari, A., Jeyakumar, S.J. (2020). Structural, optical and Photocatalytic degradation of organic dyes by sol gel prepared Ni doped CdS nanoparticles. Surfaces and Interfaces, 21, 100775. DOI: 10.1016/j.surfin.2020.100775
  8. Zhang, W., Huo, C., Hou, B., Lin, C., Yan, X., Feng, J., Yan, W. (2021). Secondary particle size determining sedimentation and adsorption kinetics of titanate-based materials for ammonia nitrogen and methylene blue removal. Journal of Molecular Liquids, 343, 117026. DOI: 10.1016/j.molliq.2021.117026
  9. Yang, Z., Liu, X., Liu, X., Wu, J., Zhu, X., Bai, Z., Yu, Z. (2021). Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids and Surfaces B: Biointerfaces, 200, 111605. DOI: 10.1016/j.colsurfb.2021.111605
  10. He, Y., Jiang, D. Bin, Chen, J., Jiang, D.Y., Zhang, Y.X. (2018). Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. Journal of Colloid and Interface Science, 510, 207–220. DOI: 10.1016/j.jcis.2017.09.066
  11. Yu, F., Tian, F., Zou, H., Ye, Z., Peng, C., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Wei, X., Gao, B. (2021). ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. Journal of Hazardous Materials, 415, 125511. DOI: 10.1016/j.jhazmat.2021.125511
  12. Huang, J., Peng, L., Zeng, G., Li, X., Zhao, Y., Liu, L., Li, F., Chai, Q. (2014). Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Separation and Purification Technology, 125, 83–89. DOI: 10.1016/j.seppur.2014.01.020
  13. Al-Hamdi, A.M., Rinner, U., Sillanpää, M. (2017). Tin dioxide as a photocatalyst for water treatment: A review. Process Safety and Environmental Protection, 107, 190–205. DOI: 10.1016/j.psep.2017.01.022
  14. Bora Akin, M., Oner, M. (2013). Photodegradation of methylene blue with sphere-like ZnO particles prepared via aqueous solution. Ceramics International, 39(8), 9759–9762. DOI: 10.1016/j.ceramint.2013.05.024
  15. Odling, G., Robertson, N. (2019). Bridging the gap between laboratory and application in photocatalytic water purification. Catalysis Science and Technology, 9(3), 533–545. DOI: 10.1039/c8cy02438c
  16. Sun, S., Zhao, R., Xie, Y., Liu, Y. (2019). Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control, 100, 183–188. DOI: 10.1016/j.foodcont.2019.01.014
  17. Wang, P., Yuan, Q. (2021). Photocatalytic degradation of tetracyclines in liquid digestate: Optimization, kinetics and correlation studies. Chemical Engineering Journal, 410, 128327. DOI: 10.1016/j.cej.2020.128327
  18. Abdullah, N., Ayodele, B. V., Mansor, W.N.W., Abdullah, S. (2018). Effect of incorporating TiO2 photocatalyst in PVDF hollow fibre membrane for photo-assisted degradation of methylene blue. Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 588–591. DOI: 10.9767/bcrec.13.3.2909.588-591
  19. Zhang, H., Wang, X., Zhu, D., Zhao, J., Yang, T., Zhou, Y., Lu, J., Cai, C., Huang, J., Zhou, G. (2021). Interfacial oxidation of hafnium modified NiAl alloys. Corrosion Science, 189, 109604. DOI: 10.1016/j.corsci.2021.109604
  20. Kafeshani, M.A., Mahdikhah, V., Sheibani, S. (2022). Facile preparation and modification of SrTiO3 through Ni–Cd co-doping as an efficient visible-light-driven photocatalyst. Optical Materials, 133, 113080. DOI: 10.1016/j.optmat.2022.113080
  21. Khan, S., Noor, A., Khan, I., Muhammad, M., Sadiq, M., Muhammad, N. (2023). Photocatalytic Degradation of Organic Dyes Contaminated Aqueous Solution Using Binary CdTiO2 and Ternary NiCdTiO2 Nanocomposites. Catalysts, 13(1), 44. DOI: 10.3390/catal13010044
  22. Kebede, M.T., Devi, S., Dillu, V., Chauhan, S. (2022). Influence of novel Cd – Ni co-substitution on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Journal of Alloys and Compounds, 894, 162552. DOI: 10.1016/j.jallcom.2021.162552
  23. Munawar, T., Iqbal, F., Yasmeen, S., Mahmood, K., Hussain, A. (2020). Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceramics International, 46(2), 2421–2437. DOI: 10.1016/j.ceramint.2019.09.236
  24. Yadav, D., Kavaiya, A.R., Mohan, D., Prasad, R. (2017). Low temperature selective catalytic reduction (SCR) of NOx emissions by Mn-doped Cu/Al2O3 catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 415–429. DOI: 10.9767/bcrec.12.3.895.415-429
  25. Saffar, A., Ahangar, H.A., Salehi, S., Fekri, M.H., Rabbani, A. (2021). Synthesis of novel ZnAl2O4/Al2O3 nanocomposite by sol–gel method and its application as adsorbent. Journal of Sol-Gel Science and Technology, 99(1), 158–168. DOI: 10.1007/s10971-021-05559-1
  26. Sodeifian, G., Behnood, R. (2017). Application of microwave irradiation in preparation and characterization of CuO/Al2O3 nanocomposite for removing MB dye from aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 342, 25–34. DOI: 10.1016/j.jphotochem.2017.03.038
  27. Goudarzi, M., Salavati-Niasari, M. (2018). Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/Al2O3 nanostructures; enhancement of visible light photocatalytic activity. International Journal of Hydrogen Energy, 43(31), 14406–14416. DOI: 10.1016/j.ijhydene.2018.06.034
  28. Sangor, F.I.M.S., Al-Ghouti, M.A. (2023). Waste-to-value: Synthesis of nano-aluminum oxide (nano-γ-Al2O3) from waste aluminum foils for efficient adsorption of methylene blue dye. Case Studies in Chemical and Environmental Engineering, 8, 100394. DOI: 10.1016/j.cscee.2023.100394
  29. Sridevi, A., Krishnamohan, S., Thairiyaraja, M., Prakash, B., Yokeshwaran, R. (2022). Visible-light driven γ-Al2O3, CuO and γ-Al2O3/CuO nanocatalysts: Synthesis and enhanced photocatalytic activity. Inorganic Chemistry Communications, 138, 109311. DOI: 10.1016/j.inoche.2022.109311
  30. Nallendran, R., Selvan, G., Balu, A.R. (2018). Photoconductive and photocatalytic properties of CdO–NiO nanocomposite synthesized by a cost effective chemical method. Journal of Materials Science: Materials in Electronics, 29(13), 11384–11393. DOI: 10.1007/s10854-018-9227-5
  31. Balamurugan, S., Balu, A.R., Narasimman, V., Selvan, G., Usharani, K., Srivind, J., Suganya, M., Manjula, N., Rajashree, C., Nagarethinam, V.S. (2019). Multi metal oxide CdO-Al2O3-NiO nanocomposite - Synthesis, photocatalytic and magnetic properties. Materials Research Express, 6(1), 015022. DOI: 10.1088/2053-1591/aae5af
  32. Rahman, Q.I., Ahmad, M., Misra, S.K., Lohani, M. (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91, 170–174. DOI: 10.1016/j.matlet.2012.09.044
  33. Jawad, A.H., Alkarkhi, A.F.M., Mubarak, N.S.A. (2015). Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: optimization using response surface methodology (RSM). Desalination and Water Treatment, 56(1), 161–172. DOI: 10.1080/19443994.2014.934736
  34. Isobe, T., Daimon, K., Sato, T., Matsubara, T., Hikichi, Y., Ota, T. (2008). Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties. Ceramics International, 34(1), 213–217. DOI: 10.1016/j.ceramint.2006.08.017
  35. Sahu, S.K., Razi, M.K., Beuscher, M., Chagnes, A. (2020). Recovery of metal values from ni-cd cake waste residue of an iranian zinc plant by hydrometallurgical route. Metals, 10(5), 655. DOI: 10.3390/met10050655
  36. Gürgenç, E., Dıkıcı, A., Aslan, F. (2022). Investigation of structural, electrical and photoresponse properties of composite based Al/NiO:CdO/p-Si/Al photodiodes. Physica B: Condensed Matter, 639, 413981. DOI: 10.1016/j.physb.2022.413981
  37. Liu, Y., Meng, Y., Qiu, X., Zhou, F., Wang, H., Zhou, S., Yan, C. (2023). Novel porous phosphoric acid-based geopolymer foams for adsorption of Pb(II), Cd(II) and Ni(II) mixtures: Behavior and mechanism. Ceramics International, 49(4), 7030–7039. DOI: 10.1016/j.ceramint.2022.10.164
  38. Vishaka, E.J., Priya Dharshini, M., Shally, V., Gerardin Jayam, S. (2022). NiO-CdO nanocomposite for photocatalytic applications. Materials Today: Proceedings, 68, 294–298. DOI: 10.1016/j.matpr.2022.05.180
  39. Caccamo, M.T., Mavilia, G., Mavilia, L., Lombardo, D., Magazù, S. (2020). Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials, 13(5), 1100. DOI: 10.3390/ma13051100
  40. Farahmandjou, M., Motaghi, S. (2019). Sol–gel synthesis of Ce-doped α-Al2O3 : Study of crystal and optoelectronic properties. Optics Communications, 441, 1–7. DOI: 10.1016/j.optcom.2019.02.029
  41. Anitha, S., Suganya, M., Prabha, D., Srivind, J., Balamurugan, S., Balu, A.R. (2018). Synthesis and characterization of NiO-CdO composite materials towards photoconductive and antibacterial applications. Materials Chemistry and Physics, 211, 88–96. DOI: 10.1016/j.matchemphys.2018.01.048
  42. Hakimi, M., Mardani, Z., Moeini, K. (2013). Spectral and geometrical study of two cadmium complexes, mer-R,S-[Cd(aepn)2]X2 (X: I-, Cl-, aepn: N-(2-Aminoethyl)-1,3-propanediamine) supported by solution experiments. Journal of the Korean Chemical Society, 57(4), 447–454. DOI: 10.5012/jkcs.2013.57.4.447
  43. Jbara, A.S., Othaman, Z., Saeed, M.A. (2017). Structural, morphological and optical investigations of θ-Al2O3 ultrafine powder. Journal of Alloys and Compounds, 718, 1–6. DOI: 10.1016/j.jallcom.2017.05.085
  44. Joyce Stella, R., Thirumala Rao, G., Pushpa Manjari, V., Babu, B., Rama Krishna, C., Ravikumar, R.V.S.S.N. (2015). Structural and optical properties of CdO/ZnS core/shell nanocomposites. Journal of Alloys and Compounds, 628, 39–45. DOI: 10.1016/j.jallcom.2014.11.201
  45. Debanath, M.K., Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119. DOI: 10.1016/j.matlet.2013.08.069
  46. Vijeth, H., Ashokkumar, S.P., Yesappa, L., Vandana, M., Devendrappa, H. (2019). Photocatalytic degradation of methylene blue and Rhodamine B using polythiophene nanocomposites under visible and UV light. AIP Conference Proceedings, 2115, 030535. DOI: 10.1063/1.5113375
  47. Boschloo, G., Hagfeldt, A. (2001). Spectroelectrochemistry of nanostructured NiO. Journal of Physical Chemistry B, 105(15), 3039–3044. DOI: 10.1021/jp003499s
  48. Przeździecka, E., Strąk, P., Wierzbicka, A., Adhikari, A., Lysak, A., Sybilski, P., Sajkowski, J.M., Seweryn, A., Kozanecki, A. (2021). The Band-Gap Studies of Short-Period CdO/MgO Superlattices. Nanoscale Research Letters, 16(1), 59. DOI: 10.1186/s11671-021-03517-y
  49. Alkaykh, S., Mbarek, A., Ali-Shattle, E.E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663. DOI: 10.1016/j.heliyon.2020.e03663
  50. Zhang, L., Jamal, R., Zhao, Q., Wang, M., Abdiryim, T. (2015). Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Research Letters, 10(1), 1–9. DOI: 10.1186/s11671-015-0859-6
  51. Abdiryim, T., Ali, A., Jamal, R., Osman, Y., Zhang, Y. (2014). A facile solid-state heating method for preparation nanocomposite and photocatalytic activity. Nanoscale Research Letters, 89, 1–8. DOI: 10.1186/1556-276X-9-89
  52. Senatova, S.I., Senatov, F.S., Kuznetsov, D. V., Stepashkin, A.A., Issi, J.P. (2017). Effect of UV-radiation on structure and properties of PP nanocomposites. Journal of Alloys and Compounds, 707, 304–309. DOI: 10.1016/j.jallcom.2016.11.170
  53. Anpilov, A.M., Barkhudarov, E.M., Kozlov, Y.N., Kossyi, I.A., Misakyan, M.A., Moryakov, I. V., Taktakishvili, M.I., Tarasova, N.M., Temchin, S.M. (2019). UV Radiation of High-Voltage Multi-Electrode Surface Discharge in Gaseous Medium. Plasma Physics Reports, 45(3), 246–251. DOI: 10.1134/S1063780X19020016
  54. Sari, M.I., Agustina, T.E., Melwita, E., Aprianti, T. (2017). Color and COD degradation in photocatalytic process of procion red by using TiO2 catalyst under solar irradiation. AIP Conference Proceedings, 1903, 040017. DOI: 10.1063/1.5011536
  55. Richards, B.S., Hudry, D., Busko, D., Turshatov, A., Howard, I.A. (2021). Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chemical Reviews, 121(15), 9165–9195. DOI: 10.1021/acs.chemrev.1c00034
  56. Mebed, A.M., Abd-Elnaiem, A.M., Alshammari, A.H., Taha, T.A., Rashad, M., Hamad, D. (2022). Controlling the Structural Properties and Optical Bandgap of PbO–Al2O3 Nanocomposites for Enhanced Photodegradation of Methylene Blue. Catalysts, 12(2), 142. DOI: 10.3390/catal12020142
  57. Tzompantzi, F., Mantilla, A., Bañuelos, F., Fernández, J.L., Gómez, R. (2011). Improved photocatalytic degradation of phenolic compounds with ZnAl mixed oxides obtained from LDH materials. Topics in Catalysis, 54(1–4), 257–263. DOI: 10.1007/s11244-011-9656-3
  58. Chakrabarti, S., Dutta, B.K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 112(3), 269–278. DOI: 10.1016/j.jhazmat.2004.05.013
  59. Sapawe, N., Jalil, A.A., Triwahyono, S., Sah, R.N.R.A., Jusoh, N.W.C., Hairom, N.H.H., Efendi, J. (2013). Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of SiOZn bonds. Applied Catalysis A: General, 456, 144–158. DOI: 10.1016/j.apcata.2013.02.025
  60. Kansal, S.K., Singh, M., Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 141(3), 581–590. DOI: 10.1016/j.jhazmat.2006.07.035
  61. Tayyebi, A., Soltani, T., Lee, B.K. (2019). Effect of pH on photocatalytic and photoelectrochemical (PEC) properties of monoclinic bismuth vanadate. Journal of Colloid and Interface Science, 534, 37–46. DOI: 10.1016/j.jcis.2018.08.095

Last update:

No citation recorded.

Last update:

No citation recorded.