skip to main content

Kinetic Study of the Aluminum–water Reaction Using NaOH/NaAlO2 Catalyst for Hydrogen Production from Aluminum Cans Waste

1Department of Physics Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, East Java, Indonesia

2Department of Chemical Engineering, Universitas Jember, Jl. Kalimantan No. 37, Jember 68121, East Java, Indonesia

3Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

4 Environmental Management Postgraduate Program, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang 30131, South Sumatra, Indonesia

View all affiliations
Received: 21 Sep 2023; Revised: 27 Oct 2023; Accepted: 28 Oct 2023; Available online: 31 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The presence of oxide layers covering the surface of aluminum is known to impede the hydrogen production reaction. These oxide layers can be broken by adding catalysts and increasing the aluminum-water reaction temperature. Common catalysts used are alkaline catalysts that are capable of achieving high hydrogen production rates in a short time at lower temperatures, while intermediate temperatures of above 50 °C can accelerate the hydration reaction of the oxide layer. Herein, the mixture of NaOH and NaAlO2 catalysts was employed to attain a stable NaAlO2 solution and continuous reaction of NaOH and aluminum. This research analyzes the influence of temperature between 32 and 80 °C on the aluminum, 0.3 M NaOH and 0.001 M NaAlO2 catalysts solution at atmospheric pressure. All solutions produces a similar hydrogen yields and rate. Solutions containing NaAlO2 indicate reverse reaction that surpressing the Al(OH)3 precipitation. Residue from the reaction is investigated using X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscope (SEM). The volume of hydrogen produced is evaluated using a mathematical mass reduction and shrinking core model. The rate of hydrogen production depends largely on the aqueous solution's temperature, with an activation energy of 47.4 kJ/mol. Based on the findings, it is readily apparent that the reaction only produced gibbsite and bayerite, with gibbsite and bayerite being dominant at 32–70 °C and 80 °C, respectively. The mass reduction model fits well with the present results with only an average 5.1 mL deviation, whereas the shrinking core model generally tends to result in underestimated values with an average deviation of 23.9 mL. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Aluminum waste; Hydrogen; Kinetic; Oxide Layers
Funding: Ministry of Education, Culture, Research and Technology Republic of Indonesia under contract 4433/UN25.3.1/LT/2022; Institut Teknologi Sepuluh Nopember under contract 1659/PKS/ITS/2022

Article Metrics:

  1. Londono-Pulgarin, D., Cardona-Montoya, G., Restrepo, J.C., Munoz-Leiva, F. (2021). Fossil or bioenergy? Global fuel market trends. Renewable and Sustainable Energy Reviews, 143, 110905. DOI: 10.1016/j.rser.2021.110905
  2. Oliveira, T.C.G., Hanlon, K.E., Interlandi, M.A., Torres-Mayanga, P.C., Silvello, M.A.C., Lachos-Perez, D., Timko, M.T., Rostagno, M.A., Goldbeck, R., Forster-Carneiro, T. (2020). Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. Journal of Supercritical Fluids, 164, 104916. DOI: 10.1016/j.supflu.2020.104916
  3. Irankhah, A., Seyed Fattahi, S.M., Salem, M. (2018). Hydrogen generation using activated aluminum/water reaction. International Journal of Hydrogen Energy, 43 (33), 15739–15748. DOI: 10.1016/j.ijhydene.2018.07.014
  4. Holechek, J.L., Geli, H.M.E., Sawalhah, M.N., Valdez, R. (2022). A Global Assessment : Can Renewable Energy Replace Fossil Fuels by 2050?. Sustainability, 14(8), 4792. DOI: 10.3390/su14084792
  5. Rin, T., Sangwichien, C., Yamsaengsung, R., Reungpeerakul, T. (2021). Hydrogen generation from the hydrolysis of aluminum promoted by Ni–Li–B catalyst. International Journal of Hydrogen Energy, 46 (56), 28450–28461. DOI: 10.1016/j.ijhydene.2021.06.101
  6. Singh, K.K., Meshram, A., Gautam, D., Jain, A. (2019). Hydrogen production using waste aluminium dross: From industrial waste to next-generation fuel. Agronomy Research, 17, 1199–1206. DOI: 10.15159/AR.19.022
  7. Meshram, A., Jain, A., Rao, M.D., Singh, K.K. (2019). From industrial waste to valuable products: preparation of hydrogen gas and alumina from aluminium dross. Journal of Material Cycles and Waste Management, 21(4), 984–993. DOI: 10.1007/s10163-019-00856-y
  8. Bolt, A., Dincer, I., Agelin-Chaab, M. (2020). Experimental study of hydrogen production process with aluminum and water. International Journal of Hydrogen Energy, 45 (28), 14232–14244. DOI: 10.1016/j.ijhydene.2020.03.160
  9. Dawood, F., Anda, M., Shafiullah, G.M. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45 (7), 3847–3869. DOI: 10.1016/j.ijhydene.2019.12.059
  10. Osman, A.I., Mehta, N., Elgarahy, A.M., Hefny, M., Hinai, A. Al, Muhtaseb, H. Al, Rooney, D.W. (2022). Hydrogen production, storage, utilisation and environmental impacts : a review. Environmental Chemistry Letters, 20, 153–188. DOI: 10.1007/s10311-021-01322-8
  11. Midilli, A., Kucuk, H., Topal, M.E., Akbulut, U., Dincer, I. (2021). A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy, 46(50), 25385–25412. DOI: 10.1016/j.ijhydene.2021.05.088
  12. Chen, J., Xu, W., Zhang, F., Zuo, H., E, J., Wei, K., Liao, G., Fan, Y. (2019). Thermodynamic and environmental analysis of integrated supercritical water gasification of coal for power and hydrogen production. Energy Conversion and Management, 198, 111927. DOI: 10.1016/j.enconman.2019.111927
  13. Chen, J., Wang, L., Cheng, Z., Lu, L., Guo, L., Jin, H., Zhang, D., Wang, R., Liu, S. (2021). Performance simulation and thermodynamics analysis of hydrogen production based on supercritical water gasification of coal. International Journal of Hydrogen Energy, 46 (56), 28474–28485. DOI: 10.1016/j.ijhydene.2021.06.097
  14. Prasad, R. (2009). Design of a Simple and Cheap Water Electrolyser for the Production of Solar Hydrogen. Bulletin of Chemical Reaction Engineering & Catalysis, 4 (1), 10–15. DOI: 10.9767/bcrec.4.1.7113.10-15
  15. Burton, N.A., Padilla, R. V., Rose, A., Habibullah, H. (2021). Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews, 135, 110255. DOI: 10.1016/j.rser.2020.110255
  16. Shiva Kumar, S., Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793–13813. DOI: 10.1016/j.egyr.2022.10.127
  17. Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M. (2022). Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy and Environmental Science, 15 (9), 3583–3602. DOI: 10.1039/d2ee01023b
  18. Anzelmo, B., Wilcox, J., Liguori, S. (2018). Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions. Journal of Membrane Science, 568, 113–120. DOI: 10.1016/j.memsci.2018.09.054
  19. El Hajj Chehade, A.M., Daher, E.A., Assaf, J.C., Riachi, B., Hamd, W. (2020). Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon. International Journal of Hydrogen Energy, 45 (58), 33235–33247. DOI: 10.1016/j.ijhydene.2020.09.077
  20. Boretti, A., Banik, B.K. (2021). Advances in Hydrogen Production from Natural Gas Reforming. Advanced Energy and Sustainability Research, 2 (11), 2100097. DOI: 10.1002/aesr.202100097
  21. Chibane, L. (2018). Simulation study of a membrane reactor for ultrapure hydrogen recovery from methanol steam reforming reaction under periodic steady-state. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 275–285. DOI: 10.9767/bcrec.13.2.1340.275-285
  22. Razak, S.A., Bahruji, H., Mahadi, A.H., Yun, H.W. (2022). H2O2 Exfoliation of TiO2 for Enhanced Hydrogen Production from Photocatalytic Reforming of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 420–429. DOI: 10.9767/BCREC.17.2.13920.420-429
  23. Lesmana, D., Wu, H.S. (2017). Cu/ZnO/Al2O3/Cr2O3/CeO2 catalyst for hydrogen production by oxidative methanol reforming via washcoat catalyst preparation in microchannel reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 384–392. DOI: 10.9767/bcrec.12.3.966.384-392
  24. Singla, S., Sharma, S., Basu, S., Shetti, N.P., Aminabhavi, T.M. (2021). Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy, 46 (68), 33696–33717. DOI: 10.1016/j.ijhydene.2021.07.187
  25. Siavash Moakhar, R., Hosseini-Hosseinabad, S.M., Masudy-Panah, S., Seza, A., Jalali, M., Fallah-Arani, H., Dabir, F., Gholipour, S., Abdi, Y., Bagheri-Hariri, M., Riahi-Noori, N., Lim, Y.F., Hagfeldt, A., Saliba, M. (2021). Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. Advanced Materials, 33(33) DOI: 10.1002/adma.202007285
  26. Chen, Z., Wei, W., Ni, B.J. (2021). Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Current Opinion in Green and Sustainable Chemistry, 27, 100398. DOI: 10.1016/j.cogsc.2020.100398
  27. Acar, C., Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835–849. DOI: 10.1016/j.jclepro.2019.02.046
  28. Bolt, A., Dincer, I., Agelin-Chaab, M. (2021). A Review of Unique Aluminum-Water Based Hydrogen Production Options. Energy and Fuels, 35 (2), 1024–1040. DOI: 10.1021/acs.energyfuels.0c03674
  29. Buryakovskaya, O.A., Vlaskin, M.S., Ryzhkova, S.S. (2019). Hydrogen production properties of magnesium and magnesium-based materials at low temperatures in reaction with aqueous solutions. Journal of Alloys and Compounds, 785, 136–145. DOI: 10.1016/j.jallcom.2019.01.003
  30. Desai, M.A., Vyas, A.N., Saratale, G.D., Sartale, S.D. (2019). Zinc oxide superstructures: Recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2091–2127. DOI: 10.1016/j.ijhydene.2018.08.042
  31. Trowell, K., Goroshin, S., Frost, D., Bergthorson, J. (2022). Hydrogen production rates of aluminum reacting with varying densities of supercritical water. RSC Advances, 12(20), 12335–12343. DOI: 10.1039/d2ra01231f
  32. Setiani, P., Watanabe, N., Sondari, R.R., Tsuchiya, N. (2018). Mechanisms and kinetic model of hydrogen production in the hydrothermal treatment of waste aluminum. Materials for Renewable and Sustainable Energy, 7(2), 1–13. DOI: 10.1007/s40243-018-0118-8
  33. Wysocka, J., Cieslik, M., Krakowiak, S., Ryl, J. (2018). Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media. Electrochimica Acta, 289, 175–192. DOI: 10.1016/j.electacta.2018.08.070
  34. Cheng, Y. Lin, Xie, H. Jun, Cao, J. Hui, Cheng, Y. liang (2021). Effect of NaOH on plasma electrolytic oxidation of A356 aluminium alloy in moderately concentrated aluminate electrolyte. Transactions of Nonferrous Metals Society of China (English Edition), 31(12), 3677–3690. DOI: 10.1016/S1003-6326(21)65756-4
  35. Ilyin, A.P., Mostovshchikov, A. V., Nazarenko, O.B., Zmanovskiy, S. V. (2019). Heat release in chemical reaction between micron aluminum powders and water. International Journal of Hydrogen Energy, 44(52), 28096–28103. DOI: 10.1016/j.ijhydene.2019.09.072
  36. Soler, L., Candela, A.M., Macanás, J., Muñoz, M., Casado, J. (2009). In situ generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate. Journal of Power Sources, 192 (1), 21–26. DOI: 10.1016/j.jpowsour.2008.11.009
  37. Jansson, R.E.W. (1980). Electrochemical Reaction Engineering
  38. Wang, X., Li, G., Eckhoff, R.K. (2021). Kinetics study of hydration reaction between aluminum powder and water based on an improved multi-stage shrinking core model. International Journal of Hydrogen Energy, 46(67), 33635–33655. DOI: 10.1016/j.ijhydene.2021.07.191
  39. Salueña-Berna, X., Marín-Genescà, M., Vidal, L.M., Dagà-Monmany, J.M. (2021). Waste aluminum application as energy valorization for hydrogen fuel cells for mobile low power machines applications. Materials, 14(23) DOI: 10.3390/ma14237323
  40. Kasantikul, B., Poomsawat, W. (2020). Hydrogen Production from Aluminium-Water Reactions: Thermodynamic Properties Analysis. 13(3), 1–13
  41. Kandasamy, J., Mutlu, R.N., Eroğlu, E., Karaca, M., Toffoli, H., Gökalp, İ. (2023). Hydrogen production using aluminum-water splitting: A combined experimental and theoretical approach. International Journal of Hydrogen Energy. DOI: 10.1016/j.ijhydene.2023.04.068
  42. Zhuk, A.Z., Sheindlin, A.E., Kleymenov, B. V., Shkolnikov, E.I., Lopatin, M.Y. (2006). Use of low-cost aluminum in electric energy production. Journal of Power Sources, 157(2), 921–926. DOI: 10.1016/j.jpowsour.2005.11.097
  43. Yavor, Y. (2016). Aluminum-water reaction mechanism – modeling of the different reaction stages. 14th Int Energy Convers Eng Conf 2016. DOI: 10.2514/6.2016-5021
  44. Li, J., Yin, Z., Ding, Z., Liu, W., Wei, T., Chen, Q., Zhang, W. (2016). Homogeneous nucleation of Al(OH)3 crystals from supersaturated sodium aluminate solution investigated by in situ conductivity. Hydrometallurgy, 163, 77–82. DOI: 10.1016/j.hydromet.2016.03.010
  45. Maulana, F.R., Fadhilah, N., Agung Wahyuono, R., Risanti, D.D. (2023). Hydrogen Production from Waste Aluminum Foil AA1235 Using the Aluminum-Water Reaction Method with Thickness Variations. Advanced Materials Research, 1175, 9–15. DOI: 10.4028/p-587vv6
  46. Addai-Mensah, J., Gerson, A.R., Prestidge, C.A., Ametov, I., Ralston, J. (1998). Interaction between Gibbsite Crystals in Supersaturated Caustic Aluminate Solutions. Light MetaIs, 159–166
  47. Rusanen, M., Koponen, I.T., Ala-Nissila, T. (2002). Meandering instability of curved step edges on growth of a crystalline cone. Surface Science, 507–510, 305–310. DOI: 10.1016/S0039-6028(02)01262-1
  48. Misra, C. (2003). Aluminum Oxide (Hydrated). Kirk Othmer Encyclopdia of Chemical Technology, 2, 421–433
  49. Demichelis, R., Civalleri, B., Noel, Y., Meyer, A., Dovesi, R. (2008). Structure and stability of aluminium trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the Crystal06 code. Chemical Physics Letters, 465(4), 220–225. DOI: 10.1016/j.cplett.2008.09.070
  50. Prabu, S., Wang, H.W. (2021). Hydrogen generation from the reaction of Al and H2O using a synthesized Al(OH)3 nanoparticle catalyst: The role of urea. Catalysis Science and Technology, 11(13), 4636–4649. DOI: 10.1039/d1cy00534k
  51. Prabu, S., Wang, H.W. (2021). Improved hydrogen generation from Al/water reaction using different synthesized Al(OH)3 catalyst crystalline phases. International Journal of Energy Research, 45(6), 9518–9529. DOI: 10.1002/er.6478

Last update:

No citation recorded.

Last update:

No citation recorded.