skip to main content

Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic

1Institute for Technology Application and Sustainable Development, Nguyen Tat Thanh University, Nguyen Tat Thanh, 700000, Viet Nam

2Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam

Received: 14 Sep 2023; Revised: 20 Oct 2023; Accepted: 20 Oct 2023; Available online: 23 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

In this study, an approach was utilized to improve the photocatalytic efficacy of g-C3N4 by creating a composite photocatalyst through co-precipitation. This process involved incorporating NiO and ZnO into the structure, resulting in enhanced photocatalytic activity. The Scanning Electron Microscopy (SEM) showcases interesting aggregation behavior, revealing extensive arrays of ZnO/NiO/g-C3N4 particles. Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) confirms the composite's strong light absorption, especially in the visible spectrum. X-ray diffraction (XRD) analysis provides conclusive evidence of successful material synthesis. The degradation of tetracycline antibiotics under visible light exposure demonstrates an impressive photochemical degradation efficiency of 78.43%. Additionally, the composite exhibits impressive cycles of reuse, retaining its high photocatalytic activity even after four reaction cycles. This performance surpasses that of comparison samples. The synergistic integration of NiO and g-C3N4 within ZnO proves to be crucial in enhancing photocatalytic activity by enhancing electron-hole separation and mitigating recombination processes. This composite photocatalyst shows a wide potential for efficiently eliminating tetracycline antibiotics from water systems. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: ZnO/NiO/g-C3N4; nanocomposites; tetracycline; co-precipitation
Funding: NTTU Foundation for Science and Technology Development

Article Metrics:

  1. Ghasemi, A. (2022). Nanoferrite photocatalysts. In A. Ghasemi Magnetic Ferrites and Related Nanocomposites, Elsevier. p. 521–585. DOI: 10.1016/B978-0-12-824014-4.00006-8
  2. Sakka, S. (2013). Sol–Gel Process and Applications. In S. Somiya Handbook of Advanced Ceramics, Elsevier. p. 883–910. DOI: 10.1016/B978-0-12-385469-8.00048-4
  3. Wang, D., Yin, F.X., Cheng, B., Xia, Y., Yu, J.G., Ho, W.K. (2021). Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals, 40, 2369–2380. DOI: 10.1007/S12598-021-01731-2
  4. Xu, C., Zhou, Q., Huang, W.Y., Yang, K., Zhang, Y.C., Liang, T.X., Liu, Z.Q. (2022). Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Metals, 41, 2094–2107. DOI: 10.1007/S12598-021-01897-9
  5. Subramaniam, M.N., Goh, P.S., Lau, W.J., Ng, B.C., Ismail, A.F. (2019). Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. In W.J. Lau, A.F. Ismail, A. Isloor, A. Al-Ahmed Advanced Nanomaterials for Membrane Synthesis and Its Applications, Elsevier. p. 45–67. DOI: 10.1016/B978-0-12-814503-6.00003-3
  6. Sushma, S., Yadav, A. (2020). Biological and physicochemical combination processes. In A. Abdeltif, A.A. Assadi, P. Nguyen-Tri, T.A. Nguyen, S. Rtimi Nanomaterials for Air Remediation, Elsevier. p. 361–372. DOI: 10.1016/B978-0-12-818821-7.00018-X
  7. Shu, T., Yang, W., Li, K., Yan, L., Dai, Y., Guo, H. (2015). Design of Silver-Deposited Carbon Nitride Nanotubes by a One-Step Solvothermal Treatment Strategy and Their Efficient Visible-Light Photocatalytic Activity Toward Methyl Orange Degradation. Energy and Environment Focus, 4, 107–115. DOI: 10.1166/eef.2015.1143
  8. Liu, G., Huang, Y., Lv, H., Wang, H., Zeng, Y., Yuan, M., Meng, Q., Wang, C. (2021). Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Applied Catalysis B: Environmental, 284, 119683. DOI: 10.1016/j.apcatb.2020.119683
  9. Fu, Y., Huang, T., Zhang, L., Zhu, J., Wang, X. (2015). Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale, 7, 13723–13733. DOI: 10.1039/C5NR03260A
  10. Lin, P., Shen, J., Tang, H., Zulfiqar, Lin, Z., Jiang, Y. (2019). Enhanced photocatalytic H2 evolution of ultrathin g-C3N4 nanosheets via surface shuttle redox. Journal of Alloys and Compounds, 810, 151918. DOI: 10.1016/j.jallcom.2019.151918
  11. Wang, Y., Zhao, X., Cao, D., Wang, Y., Zhu, Y. (2017). Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid. Applied Catalysis B: Environmental, 211, 79–88. DOI: 10.1016/j.apcatb.2017.03.079
  12. Wang, F., Wang, Y., Feng, Y., Zeng, Y., Xie, Z., Zhang, Q., Su, Y., Chen, P., Liu, Y., Yao, K., Lv, W., Liu, G. (2018). Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen. Applied Catalysis B: Environmental, 221, 510–520. DOI: 10.1016/j.apcatb.2017.09.055
  13. Modares, M., Alijani, S., Nasernejad, B. (2022). NOx photocatalytic degradation over ZnO–CdS heterostructure composite under visible light irradiation. Research on Chemical Intermediates, 48, 1831–1845. DOI: 10.1007/s11164-022-04705-w
  14. Vu, A.-T., Mac, V.H., Nguyen, T.H., Nguyen, T.H. (2023). Preparation of carnation-like Ag-ZnO composites for enhanced photocatalysis under visible light. Nanotechnology, 34, 275602. DOI: 10.1088/1361-6528/acca24
  15. Kumala, W. (2020). Synthesis and photocatalytic activity studies of Silver-Nitrogen co-doped ZnO-Fe2O3 nanocomposites for the degradation of Methylene blue under UV-Visible region. Mediterranean Journal of Chemistry, 10, 659. DOI: 10.13171/mjc107020071461wk
  16. Bian, H., Zhang, Z., Xu, X., Gao, Y., Wang, T. (2020). Photocatalytic activity of Ag/ZnO /AgO/TiO2 composite. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114236. DOI: 10.1016/j.physe.2020.114236
  17. Alkallas, F.H., Toghan, A., Ahmed, H.A., Alrefaee, S.H., Pashameah, R.A., Alrebdi, T.A., Mwafy, E.A., Mostafa, A.M. (2022). Catalytic performance of NiO nanoparticles decorated carbon nanotubes via one-pot laser ablation method against methyl orange dye. Journal of Materials Research and Technology, 18, 3336–3346. DOI: 10.1016/j.jmrt.2022.04.010
  18. Far, H., Hamici, M., Brihi, N., Haddadi, K., Boudissa, M., Chihi, T., Fatmi, M. (2022). High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. Journal of Materials Research and Technology, 19, 1944–1960. DOI: 10.1016/j.jmrt.2022.05.159
  19. Pal, B., Sarkar, D., Giri, P.K. (2015). Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density. Applied Surface Science, 356, 804–811. DOI: 10.1016/j.apsusc.2015.08.163
  20. Lin, L.-S., Cong, Z.-X., Li, J., Ke, K.-M., Guo, S.-S., Yang, H.-H., Chen, G.-N. (2014). Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. Journal of Materials Chemistry B, 2, 1031. DOI: 10.1039/c3tb21479f
  21. Di, G., Zhu, Z., Zhang, H., Zhu, J., Qiu, Y., Yin, D., Küppers, S. (2019). Visible-light degradation of sulfonamides by Z-scheme ZnO/g-C3N4 heterojunctions with amorphous Fe2O3 as electron mediator. Journal of Colloid and Interface Science, 538, 256–266. DOI: 10.1016/j.jcis.2018.11.100
  22. Alman, V., Singh, K., Bhat, T., Sheikh, A., Gokhale, S. (2020). Sunlight Assisted improved photocatalytic degradation of rhodamine B using Pd-loaded g-C3N4/WO3 nanocomposite. Applied Physics A: Materials Science and Processing, 126, 724. DOI: 10.1007/S00339-020-03914-7
  23. Cao, J., Qin, C., Wang, Y., Zhang, H., Sun, G., Zhang, Z. (2017). Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials, 10(6), 604. DOI: 10.3390/ma10060604
  24. Raja, K., Ramesh, P.S., Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24. DOI: 10.1016/j.saa.2013.09.103
  25. Qi, K., Li, Y., Xie, Y., Liu, S., Zheng, K., Chen, Z., Wang, R. (2019). Ag Loading Enhanced Photocatalytic Activity of g-C3N4 Porous Nanosheets for Decomposition of Organic Pollutants. Frontiers in Chemistry, 7, 91. DOI: 10.3389/fchem.2019.00091
  26. Derikvandi, H., Nezamzadeh-Ejhieh, A. (2017). Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. Journal of Hazardous Materials, 321, 629–638. DOI: 10.1016/j.jhazmat.2016.09.056
  27. Goto, Y., Hisatomi, T., Wang, Q., Higashi, T., Ishikiriyama, K., Maeda, T., Sakata, Y., Okunaka, S., Tokudome, H., Katayama, M., Akiyama, S., Nishiyama, H., Inoue, Y., Takewaki, T., Setoyama, T. Minegishi, T., Takata, T., Yamada, T., Domen, K. (2018). A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2(3), 509–520. DOI: 10.1016/j.joule.2017.12.009
  28. He, Y., Cai, J., Li, T., Wu, Y., Lin, H., Zhao, L., Luo, M. (2013). Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chemical Engineering Journal, 215–216, 721–730. DOI: 10.1016/J.CEJ.2012.11.074
  29. Nie, M., Li, Y., He, J., Xie, C., Wu, Z., Sun, B., Zhang, K., Kong, L., Liu, J. (2020). Degradation of tetracycline in water using Fe3O4 nanospheres as Fenton-like catalysts: kinetics, mechanisms and pathways. New Journal of Chemistry, 44, 2847–2857. DOI: 10.1039/D0NJ00125B
  30. Shi, W., Shu, K., Sun, H., Ren, H., Li, M., Chen, F., Guo, F. (2020). Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light. Separation and Purification Technology, 246, 116930. DOI: 10.1016/j.seppur.2020.116930
  31. Guo, F., Chen, Z., Huang, X., Cao, L., Cheng, X., Shi, W., Chen, L. (2021). Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light. Separation and Purification Technology, 275, 119223. DOI: 10.1016/j.seppur.2021.119223
  32. Zhao, S., Chen, J., Liu, Y., Jiang, Y., Jiang, C., Yin, Z., Xiao, Y., Cao, S. (2019). Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chemical Engineering Journal, 367, 249–259. DOI: 10.1016/j.cej.2019.02.123
  33. Qamar, M.A., Shahid, S., Javed, M., Iqbal, S., Sher, M., Bahadur, A., AL-Anazy, M.M., Laref, A., Li, D. (2021). Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 614, 126176. DOI: 10.1016/j.colsurfa.2021.126176
  34. Qamar, M.A., Javed, M., Shahid, S., Sher, M. (2022). Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater. Materials Research Bulletin, 147, 111630. DOI: 10.1016/j.materresbull.2021.111630
  35. Ahmad, I. (2020). Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: Efficient photocatalysts for the degradation of organic pollutants. Separation and Purification Technology, 251, 117372. DOI: 10.1016/j.seppur.2020.117372
  36. Raha, S., Ahmaruzzaman, M. (2020). Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: Effects of reaction parameters, co-existing substances and water matrices. Chemical Engineering Journal, 395, 124969. DOI: 10.1016/j.cej.2020.124969
  37. Bajiri, M.A., Hezam, A., Namratha, K., Viswanath, R., Drmosh, Q.A., Naik, H.S.B., Byrappa, K. (2019). CuO/ZnO/g-C3N4 heterostructures as efficient visible light-driven photocatalysts. Journal of Environmental Chemical Engineering, 7(5), 103412. DOI: 10.1016/j.jece.2019.103412
  38. Lee, S.J., Begildayeva, T., Jung, H.J., Koutavarapu, R., Yu, Y., Choi, M., Choi, M.Y. (2021). Plasmonic ZnO/Au/g-C3N4 nanocomposites as solar light active photocatalysts for degradation of organic contaminants in wastewater. Chemosphere, 263, 128262. DOI: 10.1016/j.chemosphere.2020.128262
  39. Sheydaei, M., Ayoubi-Feiz, B., Abbaszade-Fakhri, G. (2021). A visible-light active g-C3N4/Ce–ZnO/Ti nanocomposite for efficient photoelectrocatalytic pharmaceutical degradation: Modelling with artificial neural network. Process Safety and Environmental Protection, 149, 776–785. DOI: 10.1016/j.psep.2021.03.037
  40. Thi, T.A.N., Vu, A.T. (2022). Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 403–419. DOI: 10.9767/bcrec.17.2.13931.403-419

Last update:

No citation recorded.

Last update:

No citation recorded.