skip to main content

An Experimental and Computational Study of Zeolitic Imidazole Framework (ZIF-8) Synthesis Modulated with Sodium Chloride and Its Interaction with CO2

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur Yogyakarta 55281, Indonesia

2Advanced Materials Research Centre - National Research and Innovation Agency, Banten 15314, Indonesia

Received: 6 Sep 2023; Revised: 3 Oct 2023; Accepted: 3 Oct 2023; Available online: 9 Oct 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

The increase of CO2 level in atmosphere becomes one of the driving forces for research on functional materials. Capturing and utilizing of CO2 are more important than ever, both to reduce CO2 emission and to increase the economic value of CO2 derivatives. In this study, synthesis of metal-organic frameworks (MOFs) was conducted by combining Zn2+ metal nodes and 2-methylimidazolate ligand to form zeolitic imidazolate frameworks (ZIF-8) materials. ZIF-8 was synthesised with the addition of sodium chloride to modulate the crystal morphology during the in-situ synthesis, using either water or methanol as the solvent. According to the refinement of the X-ray diffraction pattern, the ZIF-8 materials were successfully prepared and have unit cell parameters that are reasonably close to the available standard. The formation of ZIF-8 is also confirmed by IR spectroscopy, which reveals the stretching vibration mode of Zn−N from the coordination between Zn2+ and 2-methylimidazolate ligand. The crystal morphology exhibits different shape, as observed in SEM and TEM studies, with the dominant shape being a rhombic dodecahedron. The interaction between ZIF-8 and CO2 was investigated via ex-situ IR spectroscopy, combined with several computational techniques such as density functional theory and molecular dynamics, to elucidate the nature of the CO2 binding sites. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: ZIF-8; synthesis; structure; carbon dioxide; DFT; crystal morphology
Funding: Universitas Gadjah Mada under contract 5075/UN1.P.II/Dit-Lit/PT.01.01/2023

Article Metrics:

  1. Friedlingstein, P., Houghton, R.A., Marland, G., Hackler, J., Boden, T.A., Conway, T.J., Canadell, J.G., Raupach, M.R., Ciais, P., Le Quéré, C. (2010). Update on CO2 emissions. Nature Geoscience, 3, 811–812. DOI: 10.1038/ngeo1022
  2. Zoundi, Z. (2017). CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renewable and Sustainable Energy Reviews, 72, 1067–1075. DOI: 10.1016/j.rser.2016.10.018
  3. Yu, K.M.K., Curcic, I., Gabriel, J., Tsang, S.C.E. (2008). Recent Advances in CO2 Capture and Utilization, ChemSusChem, 1, 893–899. DOI: 10.1002/cssc.200800169
  4. Mac Dowell, N., Fennell, P.S., Shah, N., Maitland, G.C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7, 243–249. DOI: 10.1038/nclimate3231
  5. He, H., Perman, J.A., Zhu, G., Ma, S. (2016). Metal-Organic Frameworks for CO2 Chemical Transformations. Small, 12, 6309–6324. DOI: 10.1002/smll.201602711
  6. Daiyan, R., Zhu, X., Tong, Z., Gong, L., Razmjou, A., Liu, R.-S., Xia, Z., Lu, X., Dai, L., Amal, R. (2020). Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 78, 105213. DOI: 10.1016/j.nanoen.2020.105213
  7. Kondratenko, E.V., Mul, G., Baltrusaitis, J., Larrazábal, G.O., Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 6, 3112. DOI: 10.1039/c3ee41272e
  8. Ding, M., Flaig, R.W., Jiang, H.-L., Yaghi, O.M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48, 2783–2828. DOI: 10.1039/C8CS00829A
  9. Choe, J.H., Kim, H., Hong, C.S. (2021). MOF-74 type variants for CO2 capture. Materials Chemistry Frontiers, 5, 5172–5185. DOI: 10.1039/D1QM00205H
  10. Hu, Z., Wang, Y., Shah, B.B., Zhao, D. (2019). CO2 Capture in Metal-Organic Framework Adsorbents: An Engineering Perspective. Advanced Sustainable Systems, 3, 1800080. DOI: 10.1002/adsu.201800080
  11. Freund, R., Zaremba, O., Arnauts, G., Ameloot, R., Skorupskii, G., Dincă, M., Bavykina, A., Gascon, J., Ejsmont, A., Goscianska, J., Kalmutzki, M., Lächelt, U., Ploetz, E., Diercks, C.S., Wuttke, S. (2021). The Current Status of MOF and COF Applications. Angewandte Chemie International Edition, 60, 23975–24001. DOI: 10.1002/anie.202106259
  12. Wang, Q., Astruc, D. (2020). State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 120, 1438–1511. DOI: 10.1021/acs.chemrev.9b00223
  13. Ghanbari, T., Abnisa, F., Wan Daud, W.M.A. (2020). A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of The Total Environment, 707, 135090. DOI: 10.1016/j.scitotenv.2019.135090
  14. Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Férey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P.L., Latroche, M. (2006). MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units. Journal of the American Chemical Society, 128, 10223–10230. DOI: 10.1021/ja0621086
  15. Surblé, S., Millange, F., Serre, C., Düren, T., Latroche, M., Bourrelly, S., Llewellyn, P.L., Férey, G. (2006). Synthesis of MIL-102, a Chromium Carboxylate Metal−Organic Framework, with Gas Sorption Analysis. Journal of the American Chemical Society, 128, 14889–14896. DOI: 10.1021/ja064343u
  16. Wang, B., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453, 207–211. DOI: 10.1038/nature06900
  17. Bae, Y.-S., Mulfort, K.L., Frost, H., Ryan, P., Punnathanam, S., Broadbelt, L.J., Hupp, J.T., Snurr, R.Q. (2008). Separation of CO2 from CH4 Using Mixed-Ligand Metal−Organic Frameworks. Langmuir, 24, 8592–8598. DOI: 10.1021/la800555x
  18. Xue, M., Ma, S., Jin, Z., Schaffino, R.M., Zhu, G.-S., Lobkovsky, E.B., Qiu, S.-L., Chen, B. (2008). Robust Metal−Organic Framework Enforced by Triple-Framework Interpenetration Exhibiting High H2 Storage Density. Inorganic Chemistry, 47, 6825–6828. DOI: 10.1021/ic800854y
  19. Llewellyn, P.L., Bourrelly, S., Serre, C., Filinchuk, Y., Férey, G. (2006). How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate MIL-53. Angewandte Chemie International Edition, 45, 7751–7754. DOI: 10.1002/anie.200602278
  20. Ma, S., Wang, X.-S., Manis, E.S., Collier, C.D., Zhou, H.-C. (2007). Metal−Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis. Inorganic Chemistry, 46, 3432–3434. DOI: 10.1021/ic070338v
  21. Hayashi, H., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M. (2007). Zeolite A imidazolate frameworks. Nature Materials, 6, 501–506. DOI: 10.1038/nmat1927
  22. Cho, J.H., Lee, C., Hong, S.H., Jang, H.Y., Back, S., Seo, M., Lee, M., Min, H., Choi, Y., Jang, Y.J., Ahn, S.H., Jang, H.W., Kim, S.Y. (2022). Transition Metal Ion Doping on ZIF‐8 Enhances the Electrochemical CO2 Reduction Reaction. Advanced Materials, 2022, 2208224. DOI: 10.1002/adma.202208224
  23. Sun, J., Semenchenko, L., Lim, W.T., Ballesteros Rivas, M.F., Varela-Guerrero, V., Jeong, H.K. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264, 35–42. DOI: 10.1016/j.micromeso.2017.12.032
  24. Zaręba, J.K., Nyk, M., Samoć, M. (2016). Co/ZIF-8 Heterometallic Nanoparticles: Control of Nanocrystal Size and Properties by a Mixed-Metal Approach. Crystal Growth & Design, 16, 6419–6425. DOI: 10.1021/acs.cgd.6b01090
  25. Ding, R., Zheng, W., Yang, K., Dai, Y., Ruan, X., Yan, X., He, G. (2020). Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Separation and Purification Technology, 236, 116209. DOI: 10.1016/j.seppur.2019.116209
  26. Park, S., Jeong, H.-K. (2020). In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation. Journal of Membrane Science, 596, 117689. DOI: 10.1016/j.memsci.2019.117689
  27. Pan, Y., Heryadi, D., Zhou, F., Zhao, L., Lestari, G., Su, H., Lai, Z. (2011). Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm, 13, 6937. DOI: 10.1039/c1ce05780d
  28. Wang, S., Lv, Y., Yao, Y., Yu, H., Lu, G. (2018). Modulated synthesis of monodisperse MOF-5 crystals with tunable sizes and shapes. Inorganic Chemistry Communications, 93, 56–60. DOI: 10.1016/j.inoche.2018.05.010
  29. Cho, W., Lee, H.J., Oh, M. (2008). Growth-Controlled Formation of Porous Coordination Polymer Particles. Journal of the American Chemical Society, 130, 16943–16946. DOI: 10.1021/ja8039794
  30. Pang, M., Cairns, A.J., Liu, Y., Belmabkhout, Y., Zeng, H.C., Eddaoudi, M. (2012). Highly Monodisperse M III -Based soc-MOFs (M = In and Ga) with Cubic and Truncated Cubic Morphologies. Journal of the American Chemical Society, 134, 13176–13179. DOI: 10.1021/ja3049282
  31. Abdelhamid, H.N. (2020). Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO2 Sorption and Hydrogen Generation via NaBH4 Hydrolysis. Macromolecular Chemistry and Physics, 221, 2000031. DOI: 10.1002/macp.202000031
  32. Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2, 73–78. https://doi.org/10.1002/WCMS.81
  33. Pambudi, F.I. (2022). Electronic properties of heterometallic zeolitic imidazolate framework and its encapsulation with Ni, Pd and Pt. Inorganic Chemistry Communications, 143, 109798. DOI: 10.1016/j.inoche.2022.109798
  34. Perdew, J.P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865
  35. Grimme, S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32, 1456–1465. DOI: 10.1002/jcc.21759
  36. Bannwarth, C., Ehlert, S., Grimme, S. (2019). GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. Journal of Chemical Theory and Computation, 15, 1652–1671. DOI: 10.1021/acs.jctc.8b01176
  37. Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M.Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J.J., Köhler, C., Kowalczyk, T., Kubař, T., Lee, I.S., Lutsker, V., Maurer, R.J., Min, S.K., Mitchell, I., Negre, C., Niehaus, T.A., Niklasson, A.M.N., Page, A.J., Pecchia, A., Penazzi, G., Persson, M.P., Řezáč, J., Sánchez, C.G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V.W.-z., Frauenheim, T. (2020). DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. The Journal of Chemical Physics, 152, 124101. DOI: 10.1063/1.5143190
  38. Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103, 10186–10191. DOI: 10.1073/pnas.0602439103
  39. Hadjiivanov, K.I., Panayotov, D.A., Mihaylov, M.Y., Ivanova, E.Z., Chakarova, K.K., Andonova, S.M., Drenchev, N.L. (2021). Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews, 121, 1286–1424. DOI: 10.1021/acs.chemrev.0c00487
  40. Mohammadi, A., Nakhaei Pour, A. (2023). Triethylenetetramine-impregnated ZIF-8 nanoparticles for CO2 adsorption. Journal of CO2 Utilization, 69, 102424. DOI: 10.1016/j.jcou.2023.102424
  41. Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T., Gournis, D., Romanos, G., Karanikolos, G.N. (2018). CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous and Mesoporous Materials, 267, 53–67. DOI: 10.1016/j.micromeso.2018.03.012
  42. Zhang, Z., Xian, S., Xi, H., Wang, H., Li, Z. (2011). Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 66, 4878–4888. DOI: 10.1016/j.ces.2011.06.051
  43. Hu, Y., Liu, Z., Xu, J., Huang, Y., Song, Y. (2013). Evidence of Pressure Enhanced CO2 Storage in ZIF-8 Probed by FTIR Spectroscopy. Journal of the American Chemical Society, 135, 9287–9290. DOI: 10.1021/ja403635b

Last update:

No citation recorded.

Last update:

No citation recorded.