skip to main content

Ag-TiO2 for Efficient Methylene Blue Photodegradation Under Visible Light Irradiation

1Department of Physics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta, Central Java, 57126, Indonesia

2Centre of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Jl. Slamet Riyadi 435, Surakarta, Central Java 57146, Indonesia

Received: 11 Aug 2023; Revised: 18 Oct 2023; Accepted: 19 Oct 2023; Available online: 23 Oct 2023; Published: 11 Dec 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Photocatalysis is one of the environmentally friendly methods for degrading down wastewater contamination. TiO2 as one of the photocatalyst material is claimed can enhance the photocatalytic activity much better, if the band gap energy is reduced. In order to reduce the bandgap energy of TiO2, the novel in this research is that the temperature variations over a 24-hour period at 100 °C, 120 °C, 140 °C, and 160 °C in hydrothermal process to synthesize the photocatalyst material with Ag-doped. Diffraction patterns of Ag-TiO2 show that all sample have tetragonal crystal structure and an anatase phase which also has excellent crystallinity. Some of the nanoparticles on the surface of Ag-TiO2 have a consistent morphology, while other particles are formed irregularly. According to the DRS UV-Vis result, bandgap energy reduced as temperature increased (Eg = 3.2 eV to 2.32 eV). The results from PL Ag-TiO2 160 have the lowest intensity, which indicates a low rate of electron-hole recombination. The Ag-TiO2 160 sample produced the best photocatalytic activity, according to the results of the MB degradation test, with a relative change in concentration of 92.98% for 2 h under visible light. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Photocatalyst; Ag-TiO2; Temperature; Hydrothermal
Funding: The Ministry of Education, Culture, Research, and Technology Republic of Indonesia under contract World Class Research 2104/UN27.22/PT.01.03/2021

Article Metrics:

  1. Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. DOI: 10.1016/j.jece.2019.103248
  2. Cao, X., Tao, J., Xiao, X., Nan, J. (2018). Hydrothermal-assisted synthesis of the multi-element-doped TiO2 micro/nanostructures and their photocatalytic reactivity for the degradation of tetracycline hydrochloride under the visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 364, 202-207. DOI: 10.1016/j.jphotochem.2018.06.013
  3. Sarteep, Z., Pirbazari, A.E., Aroon, M.A. (2016). Silver doped TiO2 nanoparticles: preparation, characterization and efficient degradation of 2, 4-dichlorophenol under visible light. Journal of Water and Environmental Nanotechnology, 1(2), 135-144. DOI: 10.7508/jwent.2016.02.007
  4. Messih, M.A., Ahmed, M.A., Soltan, A., Anis, S.S. (2019). Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. Journal of Physics and Chemistry of Solids, 135, 109086. DOI: 10.1016/j.jpcs.2019.109086
  5. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 20(3), 1018-1022. DOI: 10.1016/j.scient.2013.05.017
  6. Khaki, M.R.D., Shafeeyan, M.S., Raman, A.A.A., Daud, W.M.A.W. (2017). Application of doped photocatalysts for organic pollutant degradation-A review. Journal of environmental management, 198, 78-94. DOI: 10.1016/j.jenvman.2017.04.099
  7. Daghrir, R., Drogui, P., Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 52(10), 3581-3599. DOI: 10.1021/ie303468t
  8. Padmanaban, A., Dhanasekaran, T., Kumar, S.P., Gnanamoorthy, G., Munusamy, S., Stephen, A., Narayanan, V. (2017). Visible light photocatalytic property of Ag/TiO2 composite. Mechanics, Materials Science & Engineering Journal, 9(1), 01498142. DOI: 10.2412/mmse.97.67.748
  9. Liu, Z., Liu, X., Lu, Q., Wang, Q., Ma, Z. (2019). TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 96, 214-222. DOI: 10.1016/j.jtice.2018.11.013
  10. Harikishore, M., Sandhyarani, M., Venkateswarlu, K., Nellaippan, T.A., Rameshbabu, N. (2014). Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Procedia Materials Science, 6, 557-566. DOI: 10.1016/j.mspro.2014.07.071
  11. Barakat, N.A., Kanjwal, M.A., Chronakis, I.S., Kim, H.Y. (2013). Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. Journal of Molecular Catalysis A: Chemical, 366, 333-340. DOI: 10.1016/j.molcata.2012.10.012
  12. Singh, J., Tripathi, N., Mohapatra, S. (2019). Synthesis of Ag–TiO2 hybrid nanoparticles with enhanced photocatalytic activity by a facile wet chemical method. Nano-Structures & Nano-Objects, 18, 100266. DOI: 10.1016/j.nanoso.2019.100266
  13. Lu, H., Zhou, Y., Vongehr, S., Tang, S., Meng, X. (2012). Effects of hydrothermal temperature on formation and decoloration characteristics of anatase TiO2 nanoparticles. Science China Technological Sciences, 55, 894-902. DOI: 10.1007/s11431-011-4706-4
  14. Yu, J., Wang, G., Cheng, B., Zhou, M. (2007). Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B: Environmental, 69(3-4), 171-180. DOI: 10.1016/j.apcatb.2006.06.022
  15. Malligavathy, M., Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2018). Role of hydrothermal temperature on crystallinity, photoluminescence, photocatalytic and gas sensing properties of TiO2 nanoparticles. Pramana, 90, 1-13. DOI: 10.1007/s12043-018-1533-1
  16. Avciata, O., Benli, Y., Gorduk, S., Koyun, O. (2016). Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. Journal of Engineering Technology and Applied Sciences, 1(1), 34-50. DOI: 10.30931/jetas.281381
  17. Wang, S., Han, Z., Di, T., Li, R., Liu, S., Cheng, Z. (2019). Preparation of pod-shaped TiO2 and Ag@TiO2 nano burst tubes and their photocatalytic activity. Royal Society Open Science, 6(9), 191019. DOI: 10.1098/rsos.191019
  18. Li, S., Zhu, X., Wang, B., Qiao, Y., Liu, W., Yang, H., Liu, N., Chen, M., Haifei Lu, H., Yang, Y. (2018). Influence of Ag nanoparticles with different sizes and concentrations embedded in a TiO2 compact layer on the conversion efficiency of perovskite solar cells. Nanoscale Research Letters, 13, 1-11. DOI: 10.1186/s11671-018-2626-y
  19. Zhang, Y., Fu, F., Li, Y., Zhang, D., Chen, Y. (2018). One-step synthesis of Ag@ TiO2 nanoparticles for enhanced photocatalytic performance. Nanomaterials, 8(12), 1032. DOI: 10.3390/NANO8121032
  20. Rao, T.N., Babji, P., Ahmad, N., Khan, R.A., Hassan, I., Shahzad, S.A., Husain, F.M. (2019). Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi Journal of Biological Sciences, 26(7), 1385-1391. DOI: 10.1016/j.sjbs.2019.09.005
  21. Desiati, R.D., Taspika, M., Sugiarti, E. (2019). Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Materials Research Express, 6(9), 095059. DOI: 10.1088/2053-1591/ab155c
  22. Suwarnkar, M.B., Dhabbe, R.S., Kadam, A.N., Garadkar, K.M. (2014). Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceramics International, 40(4), 5489-5496. DOI: 10.1016/j.ceramint.2013.10.137
  23. da Silva Sousa, G., Nobre, F.X., Júnior, E.A.A., Sambrano, J.R., dos Reis Albuquerque, A., dos Santos Bindá, R., da Costa Couceiro, P.R., Brito, W.R., Cavalcante, L.S., de Morais Chaves Santos, M.R., de Matos, J.M.E. (2020). Hydrothermal synthesis, structural characterization and photocatalytic properties of β-Ag2MoO4 microcrystals: correlation between experimental and theoretical data. Arabian Journal of Chemistry, 13(1), 2806-2825. DOI: 10.1016/j.arabjc.2018.07.011
  24. Makuła, P., Pacia, M., Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), 6814-6817. DOI: 10.1021/acs.jpclett.8b02892
  25. Leong, K.H., Gan, B.L., Ibrahim, S., Saravanan, P. (2014). Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Applied Surface Science, 319, 128-135. DOI: 10.1016/j.apsusc.2014.06.153
  26. Mosquera, A.A., Albella, J.M., Navarro, V., Bhattacharyya, D., Endrino, J.L. (2016). Effect of silver on the phase transition and wettability of titanium oxide films. Scientific reports, 6(1), 32171. DOI: 10.1038/srep32171
  27. Komaraiah, D., Radha, E., Sivakumar, J., Reddy, M.R., Sayanna, R. (2020). Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Optical Materials, 108, 110401. DOI: 10.1016/j.optmat.2020.110401
  28. Astuti, Y., Musthafa, F., Arnelli, A., Nurhasanah, I. (2022). French fries-like bismuth oxide: physicochemical properties, electrical conductivity and photocatalytic activity. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 146-156. DOI: 10.9767/bcrec.17.1.12554.146-156
  29. Astuti, Y., Arnelli, A., Pardoyo, P., Fauziyah, A., Nurhayati, S., Wulansari, A. D., Andianingrum, R., Widiyandari, H., & Bhaduri, G. A. (2017). Studying impact of different precipitating agents on crystal structure, morphology and photocatalytic activity of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 478-484.. DOI: 10.9767/bcrec.12.3.1144.478-484
  30. Tien, N.T.C., Nhut, C.H., Thuy, V.T.T., Huyen, T.T.B., Hien, L.P.T., Huy, N.N. (2022). Enhancement in photocatalytic efficiency of commercial TiO2 nanoparticles by calcination: A case of doxycycline removal. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 486-496. DOI: 10.9767/bcrec.17.3.13970.486-496
  31. Bassim, S., Mageed, A.K., AbdulRazak, A.A., Al-Sheikh, F. (2023). Photodegradation of Methylene Blue with Aid of Green Synthesis of CuO/TiO2 Nanoparticles from Extract of Citrus Aurantium Juice. Bulletin of Chemical Reaction Engineering & Catalysis, 18(1), 1-16. DOI: 10.9767/bcrec.16417
  32. Li, W., Xie, L., Zhou, L., Ochoa-Lozano, J., Li, C., Chai, X. (2020). A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation. Ceramics International, 46(15), 24744-24752. DOI: 10.1016/j.ceramint.2020.06.265
  33. A Jawad, A. H., Mubarak, N.S.A., Ishak, M. A.M., Ismail, K., Nawawi, W.I. (2016). Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film. Journal of Taibah University for Science, 10(3), 352-362. 2016, DOI: 10.1016/j.jtusci.2015.03.007
  34. Chen, Z., Fang, L., Dong, W., Zheng, F., Shen, M., Wang, J. (2014). Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. Journal of Materials Chemistry A, 2(3), 824-832. DOI: 10.1039/c3ta13985a
  35. Rauf, M.A., Meetani, M.A., Khaleel, A., Ahmed, A. (2010). Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157(2-3), 373-378. DOI: 10.1016/j.cej.2009.11.017

Last update:

No citation recorded.

Last update:

No citation recorded.