skip to main content

Effect of Particle Size of Rice-Husk Derived Silica on the Pyrolysis of Pomelo Peels

1Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

2Research Center of Natural Materials and Products, Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand

Received: 3 Aug 2023; Revised: 13 Sep 2023; Accepted: 13 Sep 2023; Available online: 26 Sep 2023; Published: 15 Oct 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Fulltext View|Download

Citation Format:
Cover Image
Abstract

Silica with two different sizes i.e. microsilica (MS) and nanosilica (NS) was used as a catalytic support for vanadium (5-15 wt%) in the pyrolysis of pomelo peels. Besides use of pomelo peels (agricultural residues) as a feedstock for the pyrolysis, to contribute to environmental sustainability, rice husk was used as a silica source for obtaining the silica support. From the result, it was found that non-catalytic pyrolysis of pomelo peels gave a bio-oil yield of 33.3 wt%. The catalytic pyrolysis with vanadium-modified silica decreased the bio-oil yields ranging between 27.2-33.1 wt%. This was due to the occurrence of the second reactions generated from the active sites on the catalysts, which leads to the conversion of bio-oil into gas products. For NS catalyst, increasing the amount of vanadium loading directly decreased the bio-oil yields and increased the gas yield. The variation of product phase distribution was not clearly observed for MS catalyst even with various vanadium loadings. In addition, NS catalyst exhibited higher efficiency in reducing the acid content in the bio-oil, and increasing the phenol content. The distinguished properties of the nanoparticles may be the main reason for these phenomena. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Nanotechnology; Pyrolysis; Pomelo peels
Funding: National Research Council of Thailand

Article Metrics:

  1. Varma, V.S., Yadav, J., Das, S., Kalamdhad, A.S. (2015). Potential of waste carbide sludge addition on earthworm growth and organic matter degradation during vermicomposting of agricultural wastes. Ecological Engineering, 83, 90-95. DOI: 10.1016/j.ecoleng.2015.05.050
  2. Karak, T., Sonar, I., Nath, J.R., Paul, R.K., Das, S., Boruah, R.K., Dutta, A.K., Das, K. (2015). Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized. Bioresource Technology, 187, 49-59. DOI: 10.1016/j.biortech.2015.03.070
  3. Wang, B., Dong, F., Chen, M., Zhu, J., Tan, J., Fu, X., Wang, Y., Chen, S. (2016). Advances in Recycling and Utilization of Agricultural Wastes in China: Based on Environmental Risk, Crucial Pathways, Influencing Factors, Policy Mechanism. Procedia Environmental Sciences, 31, 12-17. DOI: 10.1016/j.proenv.2016.02.002
  4. Trisdge, (5 March 2023). Production of Fresh Pomelo. https://www.tridge.com/intelligences/pomelo/production
  5. Zain, N.F.M., Yusop, S.M., Ahmad, I. (2015) Preparation and Characterization of Cellulose and Nanocellulose From Pomelo (Citrus grandis) Albedo. Journal of Nutrition & Food Sciences, 5, 334. DOI: 10.4172/2155-9600.1000334
  6. Zain, N., Mohamad Yusop, S., Ahmad, I. (2013). Cellulose Nanocrystal from Pomelo (C-Grandis Osbeck) Albedo: Chemical, Morphology and Crystallinity Evaluation. Vol. 1571, 674-679
  7. He, C., Li, H., Hong, J., Xiong, H., Ni, H., Zheng, M. (2022). Characterization and Functionality of Cellulose from Pomelo Fruitlets by Different Extraction Methods. Polymers, 14(3), 518. DOI: 10.3390/polym14030518
  8. Siamphan, C., Arnthong, J., Tharad, S., Zhang, F., Yang, J., Laothanachareon, T., Chuetor, S., Champreda, V., Zhao, X.-Q., Suwannarangsee, S. (2022). Production of D-galacturonic acid from pomelo peel using the crude enzyme from recombinant Trichoderma reesei expressing a heterologous exopolygalacturonase gene. Journal of Cleaner Production, 331, 129958. DOI: 10.1016/j.jclepro.2021.129958
  9. Gani, A., Naruse, I. (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 32(4), 649-661. DOI: 10.1016/j.renene.2006.02.017
  10. Wongsawiang, O., Unpipat, M., Chareannate, C., Chaichana, E. (2016). Pyrolysis of agricultural residues in the local area of Nakhon Pathom Province. Interdisciplinary Research Review, 11(3), 46-53. DOI: 10.14456/jtir.2016.1
  11. Durange, J.A., Santos, M.R., Pereira, M.M., Fernandes Jr, L.A., Souza, M.N., Mendes, A.N., Mesa, L.M., Sánchez, C.G., Sanchez, E.M., Pérez, J.M. (2013). Physicochemical properties of pyrolysis bio-oil from sugarcane straw and sugarcane in Natura. Journal of Biomaterials and Nanobiotechnology, 4(02), 10. DOI: 10.4236/jbnb.2013.42A002
  12. French, R., Czernik, S. (2010). Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 91(1), 25-32. DOI: 10.1016/j.fuproc.2009.08.011
  13. Bardalai, M., Mahanta, D.K. (2016). Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos). Environmental Engineering Research, 21(2), 180-187. DOI: 10.4491/eer.2015.142
  14. Boongcharoenlab, K., Tongdang, J., Jaturapiree, A., Sukrat, K., Saowapark, T., Chaichana, E. (2021). Catalytic pyrolysis of various agricultural residues over ZSM-5 derived from rice husk silica. Research Journal of Chemistry and Environment, 25(6), 118-128
  15. López, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., Torres, A. (2011). Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions. Waste Management. 31(9), 1973-1983. DOI: 10.1016/j.wasman.2011.05.021
  16. Lee, K.-H. (2009). Thermal and catalytic degradation of pyrolytic oil from pyrolysis of municipal plastic wastes. Journal of Analytical and Applied Pyrolysis, 85(1), 372-379, DOI: 10.1016/j.jaap.2008.11.032
  17. Hernández, M.D.R., Gómez, A., García, Á.N., Agulló, J., Marcilla, A. (2007). Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Applied Catalysis A: General, 317(2), 183-194. DOI: 10.1016/j.apcata.2006.10.017
  18. Lee, K.-H. (2012). Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. Journal of Analytical and Applied Pyrolysis, 94(Supplement C), 209-214. DOI: 10.1016/j.jaap.2011.12.015
  19. Sarker, M., Kabir, A., Rashid, M.M., Molla, M., Mohammad, A.S.M.D. (2011). Waste polyethylene terephthalate (PETE-1) conversion into liquid fuel. Journal of Fundamentals of Renewable Energy and Applications. 1(2011), R101202. DOI: 10.4303/jfrea/R101202
  20. Li, P., Niu, B., Pan, H., Zhang, Y., Long, D. (2023). Production of hydrocarbon-rich bio-oil from catalytic pyrolysis of waste cooking oil over nickel monoxide loaded corn cob-derived activated carbon. Journal of Cleaner Production, 384, 135653. DOI: 10.1016/j.jclepro.2022.135653
  21. Zeng, Z., Tian, X., Wang, Y., Cui, X., Zhang, Q., Dai, L., Liu, Y., Zou, R., Chen, J., Liu, J., Ruan, R. (2021). Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. Journal of Analytical and Applied Pyrolysis, 159, 105306. DOI: 10.1016/j.jaap.2021.105306
  22. Wang, L., Si, B., Han, X., Yi, W., Li, Z., Zhang, A. (2022). Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis. Industrial Crops and Products, 184, 114973. DOI: 10.1016/j.indcrop.2022.114973
  23. Saowapark, T., Sombatsompop, N., Sirisinha, C. (2009). Viscoelastic properties of fly ash-filled natural rubber compounds: Effect of fly ash loading. Journal of Applied Polymer Science, 112(4), 2552-2558. DOI: 10.1002/app.29700
  24. Kantarelis, E., Yang, W., Blasiak, W. (2014). Effects of Silica-Supported Nickel and Vanadium on Liquid Products of Catalytic Steam Pyrolysis of Biomass. Energy & Fuels, 28(1), 591-599. DOI: 10.1021/ef401939g
  25. Kim, B.-S., Jeong, C.S., Kim, J.M., Park, S.B., Park, S.H., Jeon, J.-K., Jung, S.-C., Kim, S.C., Park, Y.-K. (2016). Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts. Catalysis Today, 265, 184-191. DOI: 10.1016/j.cattod.2015.08.031
  26. Bo-ongcharoenlab, K., Rungngam, J., Khadthiphong, A., Pimpakhun, K., Kaewbuadee, J., Chaichana, E. (2018). Catalytic pyrolysis of water hyacinth with rice husk-derived silica modified by vanadium. Journal of Materials Science and Applied Energy, 7(3), 345 - 351
  27. Chaichana, E., Jongsomjit, B., Praserthdam, P. (2007). Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chemical Engineering Science, 62(3), 899-905. DOI: 10.1016/j.ces.2006.10.005
  28. Arianpour, F., Jahangiri, M., Abedi, S., Vafaee, F., Yousif, Q.A., Salavati-Niasari, M. (2022). In-situ polymerization of silica/polyethylene using bisupported Ziegler-Natta catalyst of nanosilica/BOM/TiCl4/TEAL: Study of thermo-mechanical properties system. Inorganic Chemistry Communications, 143, 109726. DOI: 10.1016/j.inoche.2022.109726
  29. Chong, C.C., Cheng, Y.W., Bahari, M.B., Teh, L.P., Abidin, S.Z., Setiabudi, H.D. (2021). Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review. International Journal of Hydrogen Energy, 46(48), 24687-24708. DOI: 10.1016/j.ijhydene.2020.01.086
  30. Mirante, F., Gomes, N., Branco, L.C., Cunha-Silva, L., Almeida, P.L., Pillinger, M., Gago, S., Granadeiro, C.M., Balula, S.S. (2019). Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous and Mesoporous Materials, 275, 163-171. DOI: 10.1016/j.micromeso.2018.07.036
  31. Gogoi, N., Gogoi, P.K., Borah, G., Bora, U. (2016). Grafting of Ru(III) complex onto nanosilica and its implication as heterogeneous catalyst for aerobic oxidative hydroxylation of arylboronic acids. Tetrahedron Letters, 57(36), 4050-4052. DOI: 10.1016/j.tetlet.2016.07.070
  32. Salakhum, S., Yutthalekha, T., Chareonpanich, M., Limtrakul, J., Wattanakit, C. (2018). Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous and Mesoporous Materials, 258, 141-150. DOI: 10.1016/j.micromeso.2017.09.009
  33. Aldosari, O.F. (2019). Selective conversion of furfuryl alcohol to 2-methylfuran over nanosilica supported Au:Pd bimetallic catalysts at room temperature. Journal of Saudi Chemical Society, 23(7), 938-946. DOI: 10.1016/j.jscs.2019.04.004
  34. Guo, W., Li, G., Zheng, Y., Li, K. (2021). Nano-silica extracted from rice husk and its application in acetic acid steam reforming. RSC Advances, 11(55), 34915-34922. DOI: 10.1039/D1RA05255A
  35. Tan, Y.L., Abdullah, A.Z., Hameed, B.H. (2018). Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters. Bioresource Technology, 264, 198-205. DOI: 10.1016/j.biortech.2018.05.058
  36. Rahman, I.A.,Padavettan, V. (2012). Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. Journal of Nanomaterials, 2012, 132424. DOI: 10.1155/2012/132424
  37. Rabiei, M., Palevicius, A., Dashti, A., Nasiri, S., Monshi, A., Vilkauskas, A., Janusas, G. (2020). Measurement modulus of elasticity related to the atomic density of planes in unit cell of crystal lattices. Materials, 13(19), 4380. DOI: 10.3390/ma13194380
  38. Occhiuzzi, M., Cordischi, D., Dragone, R. (2005). Reactivity of some vanadium oxides: An EPR and XRD study. Journal of Solid State Chemistry, 178(5), 1551-1558. DOI: 10.1016/j.jssc.2005.02.019
  39. Fang, S., Yu, Z., Ma, X., Lin, Y., Chen, L., Liao, Y. (2018). Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy, 143, 517-532. DOI: 10.1016/j.energy.2017.11.038
  40. Al Mohamadi, H., Aljabri, A., Mahmoud, E.R.I., Khan, S.Z., Aljohani, M.S., Shamsuddin, R. (2021). Catalytic pyrolysis of municipal solid waste: effects of pyrolysis parameters. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 342-352. DOI: 10.9767/bcrec.16.2.10499.342-352
  41. Maneechakr, P.,Karnjanakom, S. (2021). Improving the bio-oil quality via effective pyrolysis/deoxygenation of palm kernel cake over a metal (Cu, Ni, or Fe)-doped carbon catalyst. ACS Omega, 6(30), 20006-20014. DOI: 10.1021/acsomega.1c02999
  42. Gupta, S., Lanjewar, R., Mondal, P. (2022). Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts. Chemosphere, 287, 132220. DOI: 10.1016/j.chemosphere.2021.132220
  43. Ghaemy, M., Bazzar, M., Mighani, H. (2011). Effect of nanosilica on the kinetics of cure reaction and thermal degradation of epoxy resin. Chinese Journal of Polymer Science, 29, 141-148. DOI: 10.1007/s10118-010-1003-9
  44. Gun’ko, V., Voronin, E., Nosach, L., Turov, V., Wang, Z., Vasilenko, A., Leboda, R., Skubiszewska-Zięba, J., Janusz, W., Mikhalovsky, S. (2011). Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. Journal of Colloid and Interface Science, 355(2), 300-311. DOI: 10.1016/j.jcis.2010.12.008
  45. Chaichana, E., Khaubunsongserm, S., Praserthdam, P., Jongsomjit, B. (2011). Effect of Ga modification on different pore size silicas in synthesis of LLDPE by copolymerization of ethylene and 1-hexene with [t-BuNSiMe2Flu]TiMe2/MMAO catalyst. Polymer Bulletin, 66(9), 1301-1312. DOI: 10.1007/s00289-010-0433-4
  46. Basagiannis, A.C., Verykios, X.E. (2007). Catalytic steam reforming of acetic acid for hydrogen production. International Journal of Hydrogen Energy, 32(15), 3343-3355. DOI: 10.1016/j.ijhydene.2007.04.039
  47. Megía, P.J., Carrero, A., Calles, J.A., Vizcaíno, A.J. (2019). Hydrogen Production from Steam Reforming of Acetic Acid as a Model Compound of the Aqueous Fraction of Microalgae HTL Using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) Catalysts. Catalysts, 9(12), 1013. DOI: 10.3390/catal9121013
  48. Pandiangan, K.D., Simanjuntak, W., Avista, D., Arinanda, A.G., Hadi, S., Amrulloh, H. (2022). Synthesis of Hydroxy-Sodalite from Rice Husk Silica and Food-Grade Aluminum Foil as A Catalyst for Biomass Pyrolysis. Trends in Sciences, 19(20), 6252. DOI: 10.48048/tis.2022.6252
  49. Kim, J.-Y., Lee, J.H., Park, J., Kim, J.K., An, D., Song, I.K., Choi, J.W. (2015). Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. Journal of Analytical and Applied Pyrolysis, 114, 273-280. DOI: 10.1016/j.jaap.2015.06.007
  50. Rajić, N., Logar, N.Z., Rečnik, A., El-Roz, M., Thibault-Starzyk, F., Sprenger, P., Hannevold, L., Andersen, A., Stöcker, M. (2013). Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite. Microporous and Mesoporous Materials, 176, 162-167. DOI: 10.1016/j.micromeso.2013.04.005
  51. Neumlang, P., Khadthiphong, A., Pimpakhun, K., Kaewbuadee, J., Chaichana, E. (2018). Low acid bio-oil from para rubber seeds produced via catalytic pyrolysis with V-modified silica catalyst. Food and Applied Bioscience Journal, 6, 135-147
  52. Zhang, L., Dou, X., Yang, Z., Yang, X., Guo, X. (2021). Advance in hydrothermal bio-oil preparation from lignocellulose: effect of raw materials and their tissue structures. Biomass, 1(2), 74-93. DOI: 10.3390/biomass1020006
  53. Mendoza-Martinez, C., Sermyagina, E., Saari, J., Ramos, V.F., Vakkilainen, E., Cardoso, M., Alves Rocha, E.P. (2023). Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry. Energy, 263, 126076. DOI: 10.1016/j.energy.2022.126076
  54. Suttibak, S., Sriprateep, K., Pattiya, A. (2012). Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Procedia, 14, 668–673. DOI: 10.1016/j.egypro.2011.12.993
  55. Suttibak, S. (2017). Influence of reaction temperature on yields of bio-oil from fast pyrolysis of sugarcane residues. Engineering and Applied Science Research, 44(3), 142-147
  56. Vamvuka, D., Esser, K., Marinakis, D. (2023). Characterization of pyrolysis products of forest residues and refuse-derived fuel and evaluation of their suitability as bioenergy sources. Applied Sciences, 13(3), 1482. DOI: 10.3390/app13031482
  57. Soetardji, J.P., Widjaja, C., Djojorahardjo, Y., Soetaredjo, F.E., Ismadji, S. (2014). Bio-oil from Jackfruit Peel Waste. Procedia Chemistry, 9, 158-164. DOI: 10.1016/j.proche.2014.05.019
  58. Suntivarakorn, R., Treedet, W., Singbua, P., Teeramaetawat, N. (2018). Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Reports, 4, 565-575. DOI: 10.1016/j.egyr.2018.08.004

Last update:

No citation recorded.

Last update:

No citation recorded.